Fabrication of Perovskite-Based High-Value Integrated Capacitors by Chemical Solution Deposition

Projected trends for capacitors include increasing capacitance density and decreasing operating voltages, dielectric thickness and process cost. Advances in the fabrication and processing of barium strontium titanate (BST) and lead zirconate titanate (PZT)-based thin films are presented toward attaining these goals in next-generation high-value integrated capacitors. Increasing capacitance density has been demonstrated through the use of large-area electrodes, multilayer structures, and decreased dielectric layer thickness. Capacitance values as high as 10 μF were obtained in a single-layer, 10 cm2 film, and layer thicknesses as small as 9 nm have been achieved using chemical solution deposition. Base metal integration results for BST and PZT films are discussed in terms of additional cost and volume reduction; such films have achieved capacitance densities as high as 1.5 μF/cm2 and electric fields of 25 V/μm.

[1]  R. W. Schwartz,et al.  Chemical solution deposition of electronic oxide films , 2004 .

[2]  Katsuhiko Tanaka,et al.  Multilayer Ceramic Capacitors with Thin (Ba,Sr)TiO3 Layers by MOCVD , 1999 .

[3]  Paul G. Clem,et al.  Control of Microstructure and Orientation in Solution-Deposited BaTiO3 and SrTiO3 Thin Films , 1999 .

[4]  C. Nordquist,et al.  Effect of microstructure on the dielectric properties of compositionally graded (Ba,Sr)TiO3 films , 2007 .

[5]  R. W. Schwartz,et al.  Proton and carbon-13 NMR investigations of lead zirconate titanate (Pb(Zr,Ti)O3) thin-film precursor solutions , 1993 .

[6]  A. Tagantsev,et al.  Polar Ceramics in RF-MEMS and Microwave Reconfigurable Electronics: A Brief Review on Recent Issues , 2004 .

[7]  D. L. Overmyer,et al.  Epitaxial Solution Deposition of YBa2Cu3O7−δ‐Coated Conductors , 2005 .

[8]  J. Maria,et al.  Ferroelectric response from lead zirconate titanate thin films prepared directly on low-resistivity copper substrates , 2005 .

[9]  Zhengkui Xu,et al.  The role of interfaces on an apparent grain size effect on the dielectric properties for ferroelectric barium titanate ceramics , 1998 .

[10]  P. Clem,et al.  Chemical Solution Deposition of <100>-oriented SrTiO_3 Buffer Layers on Ni Substrates , 2002 .

[11]  Spartak Gevorgian,et al.  Do we really need ferroelectrics in paraelectric phase only in electrically controlled microwave devices , 2001 .

[12]  G. Arlt,et al.  Dielectric properties of fine‐grained barium titanate ceramics , 1985 .

[13]  Robert W. Schwartz,et al.  Chemical Solution Deposition of Perovskite Thin Films , 1997 .

[14]  P. Jain,et al.  Embedded thin film capacitors-theoretical limits , 2002 .

[15]  J. Maria,et al.  TEM and Electrical Analysis of Sputtered Barium Strontium Titanate (BST) Thin Films on Flexible Copper Substrates , 2003 .

[16]  G. Brennecka,et al.  Fabrication of ultrathin film capacitors by chemical solution deposition , 2007 .

[17]  P. Clem,et al.  Dielectric properties of random and 〈100〉 oriented SrTiO3 and (Ba,Sr)TiO3 thin films fabricated on 〈100〉 nickel tapes , 2002 .

[18]  D. Marshall,et al.  The instability of polycrystalline thin films: Experiment and theory , 1990 .

[19]  J. Speck,et al.  Epitaxial growth of PbTiO_3 thin films on (001) SrTiO_3 from solution precursors , 1995 .

[20]  O. Auciello,et al.  Ferroelectricity in Ultrathin Perovskite Films , 2004, Science.

[21]  Michael Sayer,et al.  Preparation of Pb(Zr,Ti)O3 thin films by sol gel processing: Electrical, optical, and electro‐optic properties , 1988 .

[22]  J. Maria,et al.  Dielectric and microstructural properties of barium titanate zirconate thin films on copper substrates , 2005 .

[23]  M. S. Rodgers,et al.  Thin-film decoupling capacitors for multi-chip modules , 1994, 1994 Proceedings. 44th Electronic Components and Technology Conference.

[24]  Hiroshi Kishi,et al.  Base-Metal Electrode-Multilayer Ceramic Capacitors: Past, Present and Future Perspectives , 2003 .

[25]  G. Brennecka,et al.  Multilayer thin and ultrathin film capacitors fabricated by chemical solution deposition , 2008 .

[26]  Angus I. Kingon,et al.  Lead zirconate titanate thin films directly on copper electrodes for ferroelectric, dielectric and piezoelectric applications , 2005 .

[27]  R. Waser,et al.  A novel integrated thin film capacitor realized by a multilayer ceramic–electrode sandwich structure , 1999 .

[28]  R. Bailey,et al.  Thin-Film Multilayer Capacitors Using Pyrolytically Deposited Silicon Dioxide , 1976 .

[29]  P. Clem,et al.  Chemical-Solution Deposition of Oriented (Ba0.33Sr0.67)TiO3 Thin Films , 2004 .

[30]  R. Waser,et al.  Control of the morphology of CSD-prepared (Ba,Sr)TiO3 thin films , 1999 .

[31]  N. G. Pai,et al.  Charge release of lanthanum-doped lead zirconate titanate stannate antiferroelectric thin films , 1998 .

[32]  S. Trolier-McKinstry,et al.  Microcontact Printed BaTiO3 and LaNiO3 Thin Films for Capacitors , 2006 .

[33]  Susanne Hoffmann,et al.  Microstructure of columnar-grained SrTiO_3 and BaTiO_3 thin films prepared by chemical solution deposition , 1998 .

[34]  Alisa Hunt-Lowery,et al.  Copper Compatible Barium Titanate Thin Films for Embedded Passives , 2005 .

[35]  C. Randall Scientific and Engineering Issues of the State-of-the-Art and Future Multilayer Capacitors , 2001 .