Emo2Val: Inferring Valence Scores from fine-grained Emotion Values

English. This paper studies the relationship between the valence, one of the psycholinguistic variables in the Italian version of ANEW (Montefinese et al., 2014), and emotive scores calculated by exploiting distributional methods (Passaro et al., 2015). We show two methods to infer valence from fine grained emotions and discuss their evaluation. Italiano. Questo lavoro studia la relazione tra la valenza, una delle variabili psicolinguistiche presenti nella versione italiana di ANEW (Montefinese et al., 2014) e degli score emotivi calcolati distribuzionalmente (Passaro et al., 2015). Mostriamo due metodi per inferire la valenza a partire da tali valori e ne discutiamo la valutazione.

[1]  Andrea Esuli,et al.  SENTIWORDNET: A Publicly Available Lexical Resource for Opinion Mining , 2006, LREC.

[2]  Ettore Ambrosini,et al.  Semantic memory: A feature-based analysis and new norms for Italian , 2013, Behavior research methods.

[3]  Frank L. Schmidt,et al.  The Relative Efficiency of Regression and Simple Unit Predictor Weights in Applied Differential Psychology , 1971 .

[4]  Alessandro Lenci,et al.  ItEM: A Vector Space Model to Bootstrap an Italian Emotive Lexicon , 2015 .

[5]  E. Ambrosini,et al.  The adaptation of the Affective Norms for English Words (ANEW) for Italian , 2014, Behavior research methods.

[6]  Björn W. Schuller,et al.  SenticNet 4: A Semantic Resource for Sentiment Analysis Based on Conceptual Primitives , 2016, COLING.

[7]  Silvia Bernardini,et al.  The WaCky wide web: a collection of very large linguistically processed web-crawled corpora , 2009, Lang. Resour. Evaluation.

[8]  R. Plutchik The psychology and biology of emotion , 1994 .

[9]  M. Bradley,et al.  Affective Norms for English Words (ANEW): Instruction Manual and Affective Ratings , 1999 .

[10]  P. Lang International Affective Picture System (IAPS) : Technical Manual and Affective Ratings , 1995 .

[11]  Gabriel Recchia,et al.  Reproducing affective norms with lexical co-occurrence statistics: Predicting valence, arousal, and dominance , 2015, Quarterly journal of experimental psychology.

[12]  Guy Aston,et al.  Introducing the La Repubblica Corpus: A Large, Annotated, TEI(XML)-compliant Corpus of Newspaper Italian , 2004, LREC.

[13]  Andrea Esuli,et al.  Determining Term Subjectivity and Term Orientation for Opinion Mining , 2006, EACL.

[14]  Amy Beth Warriner,et al.  Norms of valence, arousal, and dominance for 13,915 English lemmas , 2013, Behavior Research Methods.

[15]  P. Wilson,et al.  The Nature of Emotions , 2012 .

[16]  Alessandro Lenci,et al.  Evaluating Context Selection Strategies to Build Emotive Vector Space Models , 2016, LREC.