Compressive imaging: Hybrid projection design

Compressive imaging/sensing employing a random measurement basis does not incorporate the specific object prior information available for natural images. An alternate hybrid measurement basis is proposed that yields improved reconstruction performance for natural images.

[1]  Mark A Neifeld,et al.  Feature-specific imaging. , 2003, Applied optics.

[2]  Michael W. Marcellin,et al.  JPEG2000 - image compression fundamentals, standards and practice , 2002, The Kluwer International Series in Engineering and Computer Science.

[3]  Mark A Neifeld,et al.  Random projections based feature-specific structured imaging. , 2008, Optics express.

[4]  Mohan Shankar,et al.  Compressive video sensors using multichannel imagers. , 2010, Applied optics.

[5]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[6]  Amit Ashok,et al.  Compressive imaging system design using task-specific information. , 2008, Applied optics.

[7]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[8]  Daniel L. Ruderman,et al.  Origins of scaling in natural images , 1996, Vision Research.

[9]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.