Spectra of Quotient Modules

We determine the Taylor spectra of quotient tuples of the $d$-shift on Drury-Arveson spaces with finite-dimensional coefficient spaces. We show the the Taylor spectrum can be described in terms of the approximate zero set of the annihilator ideal, and in terms of the pointwise behavior of the inner multiplier associated with the quotient tuple.

[1]  Raphael Clouatre,et al.  Localizable points in the support of a multiplier ideal and spectra of constrained operators , 2019, Advances in Mathematics.

[2]  Michael Hartz,et al.  A Beurling–Lax–Halmos theorem for spaces with a complete Nevanlinna–Pick factor , 2019, Proceedings of the American Mathematical Society.

[3]  S. Richter,et al.  Hankel operators, invariant subspaces, and cyclic vectors in the Drury-Arveson space , 2015 .

[4]  J. Eschmeier,et al.  Dilations, Wandering Subspaces, and Inner Functions , 2015, 1509.07084.

[5]  B. Wick,et al.  The corona theorem for the Drury–Arveson Hardy space and other holomorphic Besov–Sobolev spaces on the unit ball in $\C^n$ , 2008, 0811.0627.

[6]  S. Richter,et al.  On the index of invariant subspaces in spaces of analytic functions of several complex variables , 2005 .

[7]  J. Sarkar,et al.  Characteristic Function of a Pure Commuting Contractive Tuple , 2005 .

[8]  Vladimír Müller,et al.  Spectral Theory of Linear Operators: and Spectral Systems in Banach Algebras , 2003 .

[9]  Devin C. V. Greene Free resolutions in multivariable operator theory , 2001, math/0109111.

[10]  S. Richter,et al.  The Structure of Inner Multipliers on Spaces with Complete Nevanlinna Pick Kernels , 2001, math/0108007.

[11]  S. McCullough,et al.  Invariant Subspaces and Nevanlinna–Pick Kernels , 2000 .

[12]  M. Wernet On semi-Fredholm theory and essential normality , 2014 .

[13]  Ric,et al.  THE CORONA THEOREM FOR THE DRURY–ARVESON HARDY SPACE AND OTHER HOLOMORPHIC BESOV–SOBOLEV SPACES ON THE UNIT BALL IN C , 2012 .

[14]  J. Eschmeier,et al.  Spectral Inclusion Theorems , 2012 .

[15]  C. Foias,et al.  Harmonic Analysis of Operators on Hilbert Space , 1970 .