Model for the computation of self-motion in biological systems.

I present a method by which direction- and speed-tuned cells, such as those commonly found in the middle temporal area of the primate brain, can be used to analyze the patterns of retinal image motion that are generated during observer movement through the environment. For pure translation, the retinal image motion is radial in nature and expands out from a point that corresponds to the direction of heading. This heading direction can be found by the use of translation detectors that act as templates for the radial image motion. Each translation detector sums the outputs of direction- and speed-tuned motion sensors arranged such that their preferred direction of motion lies along the radial direction out from the detector center. The most active detector signifies the heading direction. Rotation detectors can be constructed in a similar fashion to detect areas of uniform image speed and direction in the motion field produced by observer rotation. A model consisting of both detector types can determine the heading direction independently of any rotational motion of the observer. The model can achieve this from the outputs of the two-dimensional motion sensors directly and does not assume the existence of accurate estimates of image speed and direction. It is robust to the aperture problem and is biologically realistic. The basic elements of the model have been shown to exist in the primate visual cortex.

[1]  A. Berthoz,et al.  Contribution of the otoliths to the calculation of linear displacement. , 1989, Journal of neurophysiology.

[2]  K. Kawano,et al.  Response properties of neurons in posterior parietal cortex of monkey during visual-vestibular stimulation. I. Visual tracking neurons. , 1984, Journal of neurophysiology.

[3]  D Marr,et al.  Directional selectivity and its use in early visual processing , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[4]  R. Wurtz,et al.  The role of disparity-sensitive cortical neurons in signalling the direction of self-motion , 1990, Nature.

[5]  B. J. Frost,et al.  The processing of object and self-motion in the tectofugal and accessory optic pathways of birds , 1990, Vision Research.

[6]  Andrea J. van Doorn,et al.  Invariant Properties of the Motion Parallax Field due to the Movement of Rigid Bodies Relative to an Observer , 1975 .

[7]  D C Van Essen,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. , 1983, Journal of neurophysiology.

[8]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[9]  Keiji Tanaka,et al.  Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  D Regan,et al.  Visually guided locomotion: psychophysical evidence for a neural mechanism sensitive to flow patterns. , 1979, Science.

[11]  R W Cumming,et al.  The role of optical expansion patterns in locomotor control. , 1973, The American journal of psychology.

[12]  Daryl T Lawton Motion Analysis via Local Translational Processing. , 1982 .

[13]  Claude L. Fennema,et al.  Velocity determination in scenes containing several moving objects , 1979 .

[14]  G D Paige,et al.  Eye movement responses to linear head motion in the squirrel monkey. II. Visual-vestibular interactions and kinematic considerations. , 1991, Journal of neurophysiology.

[15]  H. Komatsu,et al.  Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs. , 1988, Journal of neurophysiology.

[16]  Ramesh C. Jain,et al.  Direct Computation of the Focus of Expansion , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  J A Perrone,et al.  Anisotropic responses to motion toward and away from the eye , 1986, Perception & psychophysics.

[18]  Allan D. Jepson,et al.  Visual Perception of Three-Dimensional Motion , 1990, Neural Computation.

[19]  J Allman,et al.  Direction- and Velocity-Specific Responses from beyond the Classical Receptive Field in the Middle Temporal Visual Area (MT) , 1985, Perception.

[20]  J H Rieger,et al.  Processing differential image motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[21]  J. Koenderink,et al.  Exterospecific component of the motion parallax field. , 1981, Journal of the Optical Society of America.

[22]  S. Lisberger,et al.  Visual responses of Purkinje cells in the cerebellar flocculus during smooth-pursuit eye movements in monkeys. I. Simple spikes. , 1990, Journal of neurophysiology.

[23]  C. J. Radford Optical flow fields in Hough transform space , 1986, Pattern Recognit. Lett..

[24]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[25]  T. Albright Centrifugal directional bias in the middle temporal visual area (MT) of the macaque , 1989, Visual Neuroscience.

[26]  Daniel J. Hannon,et al.  Direction of self-motion is perceived from optical flow , 1988, Nature.

[27]  Dana H. Ballard,et al.  Rigid body motion from depth and optical flow , 1983, Comput. Vis. Graph. Image Process..

[28]  K. Nakayama,et al.  Occlusion and the solution to the aperture problem for motion , 1989, Vision Research.

[29]  R. Gregory,et al.  Visual Constancy during Movement: 1. Effects of S's Forward and Backward Movement on Size Constancy , 1964, Perceptual and motor skills.

[30]  John A. Perrone,et al.  Simple technique for optical flow estimation , 1990 .

[31]  Thomas S. Huang,et al.  Estimating three-dimensional motion parameters of a rigid planar patch , 1981 .

[32]  K. R. Llewellyn,et al.  Visual guidance of locomotion. , 1971, Journal of experimental psychology.

[33]  J. van Santen,et al.  Elaborated Reichardt detectors. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[34]  T. Albright Direction and orientation selectivity of neurons in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[35]  S. Zeki The response properties of cells in the middle temporal area (area MT) of owl monkey visual cortex , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[36]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[37]  J. H. Van Hateren,et al.  Directional tuning curves, elementary movement detectors, and the estimation of the direction of visual movement , 1990, Vision Research.

[38]  D. C. Van Essen,et al.  Concurrent processing streams in monkey visual cortex , 1988, Trends in Neurosciences.

[39]  J HeegerDavid,et al.  Subspace methods for recovering rigid motion I , 1992 .

[40]  K. Tanaka,et al.  Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. , 1989, Journal of neurophysiology.

[41]  J. Dichgans,et al.  Visual-Vestibular Interaction: Effects on Self-Motion Perception and Postural Control , 1978 .

[42]  Alain Berthoz,et al.  Linear Self Motion Perception , 1982 .

[43]  D. Regan,et al.  Looming detectors in the human visual pathway , 1978, Vision Research.

[44]  D J Hannon,et al.  Eye movements and optical flow. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[45]  R. Desimone,et al.  Columnar organization of directionally selective cells in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[46]  H. C. Longuet-Higgins,et al.  The interpretation of a moving retinal image , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[47]  Lee Dn,et al.  The optic flow field: the foundation of vision. , 1980 .

[48]  D Regan,et al.  How do we avoid confounding the direction we are looking and the direction we are moving? , 1982, Science.

[49]  R. Andersen,et al.  The role of the posterior parietal cortex in coordinate transformations for visual-motor integration. , 1988, Canadian journal of physiology and pharmacology.

[50]  A. P. Georgopoulos,et al.  Neuronal population coding of movement direction. , 1986, Science.

[51]  R. Wurtz,et al.  Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. , 1991, Journal of neurophysiology.

[52]  E. Holst Relations between the central Nervous System and the peripheral organs , 1954 .

[53]  W. Warren,et al.  Perception of translational heading from optical flow. , 1988, Journal of experimental psychology. Human perception and performance.

[54]  Greg L. Zacharias,et al.  A visual cueing model for terrain-following applications , 1983 .

[55]  J. Simpson The accessory optic system. , 1984, Annual review of neuroscience.

[56]  K. Tanaka,et al.  Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[57]  W. Simpson,et al.  Depth Discrimination from Optic Flow , 1988, Perception.

[58]  K. Nakayama,et al.  Optical Velocity Patterns, Velocity-Sensitive Neurons, and Space Perception: A Hypothesis , 1974, Perception.

[59]  C. Hofsten,et al.  Spatial determinants of depth perception in two-dot motion patterns , 1972 .

[60]  Nicholas G. Hatsopoulos,et al.  Visual navigation with a neural network , 1991, Neural Networks.

[61]  John H. R. Maunsell,et al.  Visual processing in monkey extrastriate cortex. , 1987, Annual review of neuroscience.

[62]  E. Adelson,et al.  Phenomenal coherence of moving visual patterns , 1982, Nature.

[63]  K. Tanaka,et al.  Underlying mechanisms of the response specificity of expansion/contraction and rotation cells in the dorsal part of the medial superior temporal area of the macaque monkey. , 1989, Journal of neurophysiology.

[64]  Jan J. Koenderink,et al.  Local structure of movement parallax of the plane , 1976 .

[65]  Andrew B. Watson,et al.  A look at motion in the frequency domain , 1983 .

[66]  G. Paige,et al.  Eye movement responses to linear head motion in the squirrel monkey. I. Basic characteristics. , 1991, Journal of neurophysiology.

[67]  E. Hildreth The computation of the velocity field , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[68]  John H. R. Maunsell,et al.  The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization , 1981, The Journal of comparative neurology.

[69]  John A. Perrone,et al.  In search of the elusive flow field , 1989, [1989] Proceedings. Workshop on Visual Motion.

[70]  K. Prazdny Determining The Instantaneous Direction Of Motion From Optical Flow Generated By A Curvilinearly Moving Observer , 1981, Other Conferences.

[71]  M. Sanders Handbook of Sensory Physiology , 1975 .

[72]  D. Regan,et al.  Visual flow and direction of locomotion. , 1985, Science.

[73]  F A Miles,et al.  Ocular responses to linear motion are inversely proportional to viewing distance. , 1989, Science.

[74]  A J Ahumada,et al.  Model of human visual-motion sensing. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[75]  Hans Wallach Über visuell wahrgenommene Bewegungsrichtung , 1935 .

[76]  R. Warren The perception of egomotion. , 1976, Journal of experimental psychology. Human perception and performance.