Practice and philosophy of climate model tuning across six U.S. modeling centers.

Model calibration (or "tuning") is a necessary part of developing and testing coupled ocean-atmosphere climate models regardless of their main scientific purpose. There is an increasing recognition that this process needs to become more transparent for both users of climate model output and other developers. Knowing how and why climate models are tuned and which targets are used is essential to avoiding possible misattributions of skillful predictions to data accommodation and vice versa. This paper describes the approach and practice of model tuning for the six major U.S. climate modeling centers. While details differ among groups in terms of scientific missions, tuning targets and tunable parameters, there is a core commonality of approaches. However, practices differ significantly on some key aspects, in particular, in the use of initialized forecast analyses as a tool, the explicit use of the historical transient record, and the use of the present day radiative imbalance vs. the implied balance in the pre-industrial as a target.

[1]  V. Masson‐Delmotte,et al.  Estimating Changes in Global Temperature since the Preindustrial Period , 2017 .

[2]  William M. Putman,et al.  The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). , 2017, Journal of climate.

[3]  Andrew Gettelman,et al.  The Art and Science of Climate Model Tuning , 2017 .

[4]  Ruth Lorenz,et al.  A climate model projection weighting scheme accounting for performance and interdependence , 2017 .

[5]  J. Walsh,et al.  A database for depicting Arctic sea ice variations back to 1850 , 2017 .

[6]  Martin B. Stolpe,et al.  Reconciled climate response estimates from climate models and the energy budget of Earth , 2016 .

[7]  M. Kelley,et al.  Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice: the Larcform 1 single column model intercomparison , 2016, Journal of Advances in Modeling Earth Systems.

[8]  J. Annan,et al.  On the meaning of independence in climate science , 2016 .

[9]  James Hansen,et al.  An imperative to monitor Earth's energy imbalance , 2016 .

[10]  V. Ramaswamy,et al.  Uncertainty in Model Climate Sensitivity Traced to Representations of Cumulus Precipitation Microphysics , 2016 .

[11]  C. Chuang,et al.  An improved hindcast approach for evaluation and diagnosis of physical processes in global climate models , 2015 .

[12]  Audrey B. Wolf,et al.  Constraints on Cumulus Parameterization from Simulations of Observed MJO Events , 2015 .

[13]  Steven C. Sherwood,et al.  A practical philosophy of complex climate modelling , 2015 .

[14]  G. Bellon,et al.  The double ITCZ bias in CMIP5 models: interaction between SST, large-scale circulation and precipitation , 2015, Climate Dynamics.

[15]  Kristen Intemann,et al.  Distinguishing between legitimate and illegitimate values in climate modeling , 2015, European Journal for Philosophy of Science.

[16]  Sungsu Park,et al.  A Unified Convection Scheme (UNICON). Part I: Formulation , 2014 .

[17]  J. Hansen,et al.  CMIP5 historical simulations (1850–2012) with GISS ModelE2 , 2014 .

[18]  Richard P Allan,et al.  Changes in global net radiative imbalance 1985–2012 , 2014, Geophysical research letters.

[19]  M. Iredell,et al.  The NCEP Climate Forecast System Version 2 , 2014 .

[20]  William M. Putman,et al.  Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive , 2014 .

[21]  D. P. Schanen,et al.  Higher-Order Turbulence Closure and Its Impact on Climate Simulations in the Community Atmosphere Model , 2013 .

[22]  Philip W. Jones,et al.  A multi-resolution approach to global ocean modeling , 2013 .

[23]  Jean-Christophe Golaz,et al.  Evaluating cloud tuning in a climate model with satellite observations , 2013 .

[24]  M. Bosilovich Regional Climate and Variability of NASA MERRA and Recent Reanalyses: U.S. Summertime Precipitation and Temperature , 2013 .

[25]  Jean-Christophe Golaz,et al.  Cloud tuning in a coupled climate model: Impact on 20th century warming , 2013 .

[26]  Reto Knutti,et al.  Climate model genealogy: Generation CMIP5 and how we got there , 2013 .

[27]  E. Kowalczyk,et al.  The ACCESS coupled model: description, control climate and evaluation , 2013 .

[28]  T. Andrews,et al.  Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models , 2013 .

[29]  Andrea Molod,et al.  The impact of limiting ocean roughness on GEOS‐5 AGCM tropical cyclone forecasts , 2013 .

[30]  Andrea Molod,et al.  Constraints on the Profiles of Total Water PDF in AGCMs from AIRS and a High-Resolution Model , 2012 .

[31]  E. Maloney,et al.  Tropical Intraseasonal Variability in Version 3 of the GFDL Atmosphere Model , 2012 .

[32]  J. Stroeve,et al.  A simple approach to providing a more consistent Arctic sea ice extent time series from the 1950s to present , 2012 .

[33]  J. Lamarque,et al.  Interactive ozone and methane chemistry in GISS-E2 historical and future climate simulations , 2012 .

[34]  Daehyun Kim,et al.  The Tropical Subseasonal Variability Simulated in the NASA GISS General Circulation Model , 2012 .

[35]  Eric Winsberg Values and Uncertainties in the Predictions of Global Climate Models , 2012, Kennedy Institute of Ethics journal.

[36]  P. Jones,et al.  Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010: LAND-SURFACE TEMPERATURE VARIATIONS , 2012 .

[37]  D. Klocke,et al.  Tuning the climate of a global model , 2012 .

[38]  J. Gregory,et al.  Revisiting the Earth's sea‐level and energy budgets from 1961 to 2008 , 2011, Geophysical Research Letters.

[39]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[40]  Ramaswamy,et al.  The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3 , 2011 .

[41]  Jean-Christophe Golaz,et al.  Sensitivity of the Aerosol Indirect Effect to Subgrid Variability in the Cloud Parameterization of the GFDL Atmosphere General Circulation Model AM3 , 2011 .

[42]  Andrew,et al.  The GFDL CM3 Coupled Climate Model: Characteristics of the Ocean and Sea Ice Simulations , 2011 .

[43]  R. Knutti,et al.  Climate model genealogy , 2011 .

[44]  James D. Annan,et al.  Reliability of multi-model and structurally different single-model ensembles , 2010, Climate Dynamics.

[45]  Andrew E. Dessler,et al.  Trends in tropospheric humidity from reanalysis systems , 2010 .

[46]  Uang,et al.  The NCEP Climate Forecast System Reanalysis , 2010 .

[47]  S. Griffies,et al.  The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component of the GFDL global coupled model CM3 , 2010 .

[48]  J. Hargreaves Skill and uncertainty in climate models , 2010 .

[49]  David R. Doelling,et al.  Toward Optimal Closure of the Earth's Top-of-Atmosphere Radiation Budget , 2009 .

[50]  Reto Knutti,et al.  Should we believe model predictions of future climate change? , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[51]  Ricardo Todling,et al.  The GEOS-5 Data Assimilation System-Documentation of Versions 5.0.1, 5.1.0, and 5.2.0 , 2008 .

[52]  John M. Wallace,et al.  A large discontinuity in the mid-twentieth century in observed global-mean surface temperature , 2008, Nature.

[53]  T. Reichler,et al.  How Well Do Coupled Models Simulate Today's Climate? , 2008 .

[54]  Jeffrey T. Kiehl,et al.  Twentieth century climate model response and climate sensitivity , 2007 .

[55]  Jialin Lin,et al.  The Double-ITCZ Problem in IPCC AR4 Coupled GCMs: Ocean–Atmosphere Feedback Analysis , 2007 .

[56]  S. Saha,et al.  The NCEP Climate Forecast System , 2006 .

[57]  V. Ramaswamy,et al.  A New Parameterization of Cloud Droplet Activation Applicable to General Circulation Models , 2006 .

[58]  C. Prigent,et al.  Mineral dust aerosols in the NASA Goddard Institute for Space Sciences ModelE atmospheric general circulation model , 2006 .

[59]  V. Canuto,et al.  Present-Day Atmospheric Simulations Using GISS ModelE: Comparison to In Situ, Satellite, and Reanalysis Data , 2006 .

[60]  V. Ramaswamy,et al.  Geophysical Fluid Dynamics Laboratory general circulation model investigation of the indirect radiative effects of anthropogenic sulfate aerosol , 2005 .

[61]  Maria Cristina Facchini,et al.  The effect of physical and chemical aerosol properties on warm cloud droplet activation , 2005 .

[62]  J. Hansen,et al.  Earth's Energy Imbalance: Confirmation and Implications , 2005, Science.

[63]  S. Klein,et al.  The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations , 2004 .

[64]  G. Danabasoglu,et al.  The Community Climate System Model Version 4 , 2011 .

[65]  Christopher S. Bretherton,et al.  A New Parameterization for Shallow Cumulus Convection and Its Application to Marine Subtropical Cloud-Topped Boundary Layers. Part I: Description and 1D Results , 2004 .

[66]  G. Feingold Modeling of the first indirect effect: Analysis of measurement requirements , 2003 .

[67]  Hanna Pawlowska,et al.  An observational study of drizzle formation in stratocumulus clouds for general circulation model (GCM) parameterizations , 2003 .

[68]  S. Levitus,et al.  Warming of the World Ocean , 2000 .

[69]  T. Dunkerton,et al.  A spectral parameterization of mean-flow forcing due to breaking gravity waves , 1999 .

[70]  L. Rotstayn A physically based scheme for the treatment of stratiform clouds and precipitation in large‐scale models. I: Description and evaluation of the microphysical processes , 1997 .

[71]  A. P. Siebesma,et al.  Evaluation of Parametric Assumptions for Shallow Cumulus Convection , 1995 .

[72]  M. Tiedtke,et al.  Representation of Clouds in Large-Scale Models , 1993 .

[73]  Leo J. Donner,et al.  A Cumulus Parameterization Including Mass Fluxes, Vertical Momentum Dynamics, and Mesoscale Effects , 1993 .

[74]  Makiko Sato,et al.  Potential climate impact of Mount Pinatubo eruption , 1992 .

[75]  John F. B. Mitchell,et al.  Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models , 1990 .

[76]  Inez Y. Fung,et al.  Global climate changes as forecast by Goddard Institute for Space Studies three‐dimensional model , 1988 .

[77]  S. Manabe,et al.  Climate Calculations with a Combined Ocean-Atmosphere Model , 1969 .

[78]  Norman A. Phillips,et al.  The general circulation of the atmosphere: A numerical experiment , 1956 .

[79]  J. Hansen,et al.  CMIP 5 historical simulations ( 1850 – 2012 ) with GISS ModelE 2 , 2014 .

[80]  D. Shindell,et al.  Anthropogenic and Natural Radiative Forcing , 2014 .

[81]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[82]  B. Samuels,et al.  GFDL ’ s CM 3 Coupled Climate Model : Characteristics of the Ocean and Sea Ice Simulations , 2010 .

[83]  B. Hewitson,et al.  Good Practice Guidance Paper on Assessing and Combining Multi Model Climate Projections , 2010 .

[84]  Frank O. Bryan,et al.  Coordinated Ocean-ice Reference Experiments (COREs) , 2009 .

[85]  J. Feichter,et al.  Atmospheric Chemistry and Physics Global Indirect Aerosol Effects: a Review , 2005 .

[86]  S. Levitus,et al.  World ocean atlas 2013. Volume 1, Temperature , 2002 .

[87]  Timothy P. Boyer,et al.  World ocean atlas 2013. Volume 2, Salinity , 2002 .

[88]  S. Levitus,et al.  US Government Printing Office , 1998 .

[89]  Ui,et al.  The NCEP Climate Forecast System Version 2 , 2022 .