The Hanoi Omega-Automata Format

We propose a flexible exchange format for \(\omega \)-automata, as typically used in formal verification, and implement support for it in a range of established tools. Our aim is to simplify the interaction of tools, helping the research community to build upon other people’s work. A key feature of the format is the use of very generic acceptance conditions, specified by Boolean combinations of acceptance primitives, rather than being limited to common cases such as Buchi, Streett, or Rabin. Such flexibility in the choice of acceptance conditions can be exploited in applications, for example in probabilistic model checking, and furthermore encourages the development of acceptance-agnostic tools for automata manipulations. The format allows acceptance conditions that are either state-based or transition-based, and also supports alternating automata. Open image in new window

[1]  Keijo Heljanko,et al.  Testing LTL formula translation into Büchi automata , 2002, International Journal on Software Tools for Technology Transfer.

[2]  Moshe Y. Vardi Automata-Theoretic Model Checking Revisited , 2007, VMCAI.

[3]  Alexandre Duret-Lutz Manipulating LTL Formulas Using Spot 1.0 , 2013, ATVA.

[4]  Pierre Wolper,et al.  Simple on-the-fly automatic verification of linear temporal logic , 1995, PSTV.

[5]  C. Baier,et al.  Experiments with Deterministic ω-Automata for Formulas of Linear Temporal Logic , 2005 .

[6]  Jan Strejcek,et al.  Effective Translation of LTL to Deterministic Rabin Automata: Beyond the (F, G)-Fragment , 2013, ATVA.

[7]  Shin Nakajima,et al.  The SPIN Model Checker : Primer and Reference Manual , 2004 .

[8]  Christof Löding Optimal Bounds for Transformations of omega-Automata , 1999, FSTTCS.

[9]  Krishnendu Chatterjee,et al.  Automata with Generalized Rabin Pairs for Probabilistic Model Checking and LTL Synthesis , 2013, CAV.

[10]  Denis Poitrenaud,et al.  SPOT: an extensible model checking library using transition-based generalized Bu/spl uml/chi automata , 2004, The IEEE Computer Society's 12th Annual International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems, 2004. (MASCOTS 2004). Proceedings..

[11]  Marta Z. Kwiatkowska,et al.  PRISM 4.0: Verification of Probabilistic Real-Time Systems , 2011, CAV.

[12]  Anne Lohrli Chapman and Hall , 1985 .

[13]  Alexandre Duret-Lutz,et al.  LTL translation improvements in Spot 1.0 , 2014, Int. J. Crit. Comput. Based Syst..

[14]  Robert K. Brayton,et al.  Deterministic w Automata vis-a-vis Deterministic Buchi Automata , 1994, ISAAC.

[15]  Christel Baier,et al.  On-the-Fly Stuttering in the Construction of Deterministic ω-Automata , 2007 .

[16]  Christof Ll Oding Optimal Bounds for Transformations of !-automata , 1999 .

[17]  Mauno Rönkkö,et al.  LBT: LTL to Büchi conversion , 2001 .

[18]  Yih-Kuen Tsay,et al.  GOAL for Games, Omega-Automata, and Logics , 2013, CAV.

[19]  Vojtech Rehák,et al.  LTL to Büchi Automata Translation: Fast and More Deterministic , 2012, TACAS.

[20]  Jan Kretínský,et al.  Deterministic Automata for the (F,G)-fragment of LTL , 2012, CAV.

[21]  Alexandre Duret-Lutz,et al.  LTL translation improvements in spot , 2011 .

[22]  Heikki Tauriainen,et al.  Automata and linear temporal logic : translations with transition-based acceptance , 2006 .

[23]  Jan Kretínský,et al.  Rabinizer 3: Safraless Translation of LTL to Small Deterministic Automata , 2014, ATVA.

[24]  Christel Baier,et al.  On-the-Fly Stuttering in the Construction of Deterministic omega -Automata , 2007, CIAA.