Machine learning prediction of oncology drug targets based on protein and network properties

[1]  Emanuel J. V. Gonçalves,et al.  Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens , 2019, Nature.

[2]  Konstantinos D. Tsirigos,et al.  SignalP 5.0 improves signal peptide predictions using deep neural networks , 2019, Nature Biotechnology.

[3]  Damian Szklarczyk,et al.  STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets , 2018, Nucleic Acids Res..

[4]  J. Greenbaum,et al.  Impact of Genetic Polymorphisms on Human Immune Cell Gene Expression , 2018, Cell.

[5]  Maria Ryaboshapkina,et al.  Tissue-specific genes as an underutilized resource in drug discovery , 2018, bioRxiv.

[6]  Stefano Moro,et al.  Bridging Molecular Docking to Molecular Dynamics in Exploring Ligand-Protein Recognition Process: An Overview , 2018, Front. Pharmacol..

[7]  D. Schlessinger,et al.  Genetic-Driven Druggable Target Identification and Validation. , 2018, Trends in genetics : TIG.

[8]  Todd R. Golub,et al.  Improved estimation of cancer dependencies from large-scale RNAi screens using model-based normalization and data integration , 2018, bioRxiv.

[9]  Tingting Fu,et al.  Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics , 2017, Nucleic Acids Res..

[10]  Nicola J. Rinaldi,et al.  Genetic effects on gene expression across human tissues , 2017, Nature.

[11]  Hyunju Lee,et al.  In silico re-identification of properties of drug target proteins , 2017, BMC Bioinformatics.

[12]  John P. Overington,et al.  The druggable genome and support for target identification and validation in drug development , 2016, Science Translational Medicine.

[13]  Kaitlyn M. Gayvert,et al.  A Data-Driven Approach to Predicting Successes and Failures of Clinical Trials. , 2016, Cell chemical biology.

[14]  M. Schroeder,et al.  Drug target prioritization by perturbed gene expression and network information , 2015, Scientific Reports.

[15]  B. Ripley Classification and Regression Trees , 2015 .

[16]  Zhanchao Li,et al.  Large-scale identification of potential drug targets based on the topological features of human protein-protein interaction network. , 2015, Analytica chimica acta.

[17]  Andrew J. Doig,et al.  Properties of Protein Drug Target Classes , 2015, PloS one.

[18]  G. von Heijne,et al.  Tissue-based map of the human proteome , 2015, Science.

[19]  K. Tomczak,et al.  The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge , 2015, Contemporary oncology.

[20]  Geoffrey I. Webb,et al.  GlycoMine: a machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome , 2015, Bioinform..

[21]  Avi Ma'ayan,et al.  Lean Big Data integration in systems biology and systems pharmacology. , 2014, Trends in pharmacological sciences.

[22]  Louiqa Raschid,et al.  Ieee/acm Transactions on Computational Biology and Bioinformatics 1 Network-based Drug-target Interaction Prediction with Probabilistic Soft Logic , 2022 .

[23]  David S. Wishart,et al.  DrugBank 4.0: shedding new light on drug metabolism , 2013, Nucleic Acids Res..

[24]  Lin He,et al.  Prediction of Drug-Target Interactions for Drug Repositioning Only Based on Genomic Expression Similarity , 2013, PLoS Comput. Biol..

[25]  M. Bucan,et al.  From Mouse to Human: Evolutionary Genomics Analysis of Human Orthologs of Essential Genes , 2013, PLoS genetics.

[26]  Ruth Nussinov,et al.  Structure and dynamics of molecular networks: A novel paradigm of drug discovery. A comprehensive review , 2012, Pharmacology & therapeutics.

[27]  Yi Pan,et al.  A new essential protein discovery method based on the integration of protein-protein interaction and gene expression data , 2012, BMC Systems Biology.

[28]  Roded Sharan,et al.  Combining Drug and Gene Similarity Measures for Drug-Target Elucidation , 2011, J. Comput. Biol..

[29]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[30]  Charles Elkan,et al.  Learning gene regulatory networks from only positive and unlabeled data , 2010, BMC Bioinformatics.

[31]  B. Munos Lessons from 60 years of pharmaceutical innovation , 2009, Nature Reviews Drug Discovery.

[32]  Haibo He,et al.  Learning from Imbalanced Data , 2009, IEEE Transactions on Knowledge and Data Engineering.

[33]  Andrew J. Doig,et al.  Properties and identification of human protein drug targets , 2009, Bioinform..

[34]  T. Nikolskaya,et al.  A comprehensive functional analysis of tissue specificity of human gene expression , 2008, BMC Biology.

[35]  Charles Elkan,et al.  Learning classifiers from only positive and unlabeled data , 2008, KDD.

[36]  A. Barabasi,et al.  Drug—target network , 2007, Nature Biotechnology.

[37]  Justin Lamb,et al.  The Connectivity Map: a new tool for biomedical research , 2007, Nature Reviews Cancer.

[38]  Paul A Clemons,et al.  The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease , 2006, Science.

[39]  Jenn-Kang Hwang,et al.  Prediction of protein subcellular localization , 2006, Proteins.

[40]  T. Nikolskaya,et al.  Algorithms for network analysis in systems-ADME/Tox using the MetaCore and MetaDrug platforms , 2006, Xenobiotica; the fate of foreign compounds in biological systems.

[41]  David S. Wishart,et al.  DrugBank: a comprehensive resource for in silico drug discovery and exploration , 2005, Nucleic Acids Res..

[42]  Huan‐Xiang Zhou,et al.  Prediction of solvent accessibility and sites of deleterious mutations from protein sequence , 2005, Nucleic acids research.

[43]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[44]  M. Bucan,et al.  Promoter features related to tissue specificity as measured by Shannon entropy , 2005, Genome Biology.

[45]  J. Bajorath,et al.  Docking and scoring in virtual screening for drug discovery: methods and applications , 2004, Nature Reviews Drug Discovery.

[46]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[47]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[48]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[49]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[50]  I. Longden,et al.  EMBOSS: the European Molecular Biology Open Software Suite. , 2000, Trends in genetics : TIG.

[51]  N. Blom,et al.  Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. , 1999, Journal of molecular biology.

[52]  Erik L. L. Sonnhammer,et al.  A Hidden Markov Model for Predicting Transmembrane Helices in Protein Sequences , 1998, ISMB.

[53]  A. Bairoch,et al.  The SWISS-PROT protein sequence data bank. , 1991, Nucleic acids research.

[54]  A. Bairoch,et al.  The SWISS-PROT protein sequence data bank. , 1991, Nucleic acids research.

[55]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[56]  J. Garnier,et al.  Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. , 1978, Journal of molecular biology.