Review: Using diffusion-weighted magnetic resonance imaging techniques to explore the microstructure and connectivity of subcortical white matter tracts in the human auditory system

Since its inception 30 years ago, diffusion-weighted magnetic resonance imaging (dMRI) has advanced to become a common component of routine clinical MRI examinations. Diffusion-weighted magnetic resonance offers a way to measure anisotropic diffusion in-vivo, which has led to the development of techniques capable of characterising the orientation of diffusion within living tissue. These modelling techniques can be used to investigate the microstructure and connectivity of white matter tracts within the human brain. Such techniques have been used to study many neural networks within the human body. There is, however, a notable paucity of research utilising dMRI techniques to investigate the white matter tracts of the auditory brainstem. In this review we provide a brief introduction to the basic principles of dMRI analysis and consider some of the difficulties associated with applying dMRI techniques to study the auditory pathways of the brainstem. We also consider aspects of current dMRI methodologies relevant to the auditory brainstem to inform future research in this area.

[1]  Derek K. Jones,et al.  Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging , 2013, Human brain mapping.

[2]  Joseph M. Gullett,et al.  Imaging White Matter in Human Brainstem , 2013, Front. Hum. Neurosci..

[3]  Katrin Amunts,et al.  White matter fiber tracts of the human brain: Three-dimensional mapping at microscopic resolution, topography and intersubject variability , 2006, NeuroImage.

[4]  Stamatios N. Sotiropoulos,et al.  An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging , 2016, NeuroImage.

[5]  H. Versnel,et al.  Diffusion tensor imaging of the auditory nerve in patients with long-term single-sided deafness , 2015, Hearing Research.

[6]  J. Pickles An Introduction to the Physiology of Hearing , 1982 .

[7]  Ben Jeurissen,et al.  Diffusion MRI fiber tractography of the brain , 2019, NMR in biomedicine.

[8]  Stuart Crozier,et al.  Apparent Fibre Density: A novel measure for the analysis of diffusion-weighted magnetic resonance images , 2012, NeuroImage.

[9]  Gareth J. Barker,et al.  Optimal imaging parameters for fiber-orientation estimation in diffusion MRI , 2005, NeuroImage.

[10]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[11]  Gareth J. Barker,et al.  From diffusion tractography to quantitative white matter tract measures: a reproducibility study , 2003, NeuroImage.

[12]  P. Basser,et al.  Parametric and non-parametric statistical analysis of DT-MRI data. , 2003, Journal of magnetic resonance.

[13]  Daniel C Alexander,et al.  Multiple‐Fiber Reconstruction Algorithms for Diffusion MRI , 2005, Annals of the New York Academy of Sciences.

[14]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[15]  Alberto Prats-Galino,et al.  Functional anatomy of subcortical circuits issuing from or integrating at the human brainstem , 2012, Clinical Neurophysiology.

[16]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[17]  J. Hlinka,et al.  Diffusion tensor imaging and MR morphometry of the central auditory pathway and auditory cortex in aging , 2014, Neuroscience.

[18]  Rachid Deriche,et al.  Deterministic and Probabilistic Tractography Based on Complex Fibre Orientation Distributions , 2009, IEEE Transactions on Medical Imaging.

[19]  T P L Roberts,et al.  High Angular Resolution Diffusion Imaging Probabilistic Tractography of the Auditory Radiation , 2013, American Journal of Neuroradiology.

[20]  Robert Trampel,et al.  Clinical Neuroimaging Using 7 T MRI: Challenges and Prospects , 2018, Journal of neuroimaging : official journal of the American Society of Neuroimaging.

[21]  Stephen M. Smith,et al.  DTI measures in crossing-fibre areas: Increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer's disease , 2011, NeuroImage.

[22]  M. Liberman,et al.  Morphometry of intracellularly labeled neurons of the auditory nerve: Correlations with functional properties , 1984, The Journal of comparative neurology.

[23]  Madjid Samii,et al.  Diffusion tensor imaging-based fiber tracking for prediction of the position of the facial nerve in relation to large vestibular schwannomas. , 2011, Journal of neurosurgery.

[24]  Stamatios N. Sotiropoulos,et al.  Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images , 2016, NeuroImage.

[25]  A. Connelly,et al.  Determination of the appropriate b value and number of gradient directions for high‐angular‐resolution diffusion‐weighted imaging , 2013, NMR in biomedicine.

[26]  C. Beaulieu,et al.  The basis of anisotropic water diffusion in the nervous system – a technical review , 2002, NMR in biomedicine.

[27]  YauYau Wai,et al.  Diffusion tensor imaging of the auditory pathway in sensorineural hearing loss: Changes in radial diffusivity and diffusion anisotropy , 2008, Journal of magnetic resonance imaging : JMRI.

[28]  Bibek Dhital,et al.  Gibbs‐ringing artifact removal based on local subvoxel‐shifts , 2015, Magnetic resonance in medicine.

[29]  H. Abe,et al.  Microsurgical Anatomy of the Cochlear Nuclei , 2006, Neurosurgery.

[30]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[31]  Baba C. Vemuri,et al.  Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT) , 2006, NeuroImage.

[32]  A. Møller,et al.  Pathophysiology of tinnitus. , 2003, Otolaryngologic clinics of North America.

[33]  N. Makris,et al.  High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity , 2002, Magnetic resonance in medicine.

[34]  S. Wakana,et al.  Fiber tract-based atlas of human white matter anatomy. , 2004, Radiology.

[35]  Hangyi Jiang,et al.  High-Resolution Diffusion Tensor Imaging of the Brain Stem at 3 T , 2003 .

[36]  A. Connelly,et al.  White matter fiber tractography: why we need to move beyond DTI. , 2013, Journal of neurosurgery.

[37]  Hongyi Zheng,et al.  Diffusion Tensor Imaging of the Auditory Neural Pathway for Clinical Outcome of Cochlear Implantation in Pediatric Congenital Sensorineural Hearing Loss Patients , 2015, PloS one.

[38]  Wim Van Hecke,et al.  Diffusion tensor imaging : a practical handbook , 2016 .

[39]  Jan Sijbers,et al.  Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data , 2014, NeuroImage.

[40]  Petra Schmalbrock,et al.  DTI at 7 and 3 T: systematic comparison of SNR and its influence on quantitative metrics. , 2011, Magnetic resonance imaging.

[41]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[42]  J. Tournier The biophysics of crossing fibres , 2010 .

[43]  Randy L. Gollub,et al.  Reproducibility of quantitative tractography methods applied to cerebral white matter , 2007, NeuroImage.

[44]  Klaus H. Maier-Hein,et al.  Bundle-specific tractography with incorporated anatomical and orientational priors , 2019, NeuroImage.

[45]  P. Basser,et al.  Water Diffusion Changes in Wallerian Degeneration and Their Dependence on White Matter Architecture , 2000 .

[46]  Jelle Veraart,et al.  Diffusion MRI noise mapping using random matrix theory , 2016, Magnetic resonance in medicine.

[47]  Paul Suetens,et al.  Atlas-Guided Global Tractography: Imposing a Prior on the Local Track Orientation , 2014 .

[48]  G. Rance,et al.  Auditory function in children with Charcot-Marie-Tooth disease. , 2012, Brain : a journal of neurology.

[49]  Matthan W. A. Caan,et al.  DTI Analysis Methods: Fibre Tracking and Connectivity , 2016 .

[50]  Alan Connelly,et al.  Anatomically-constrained tractography: Improved diffusion MRI streamlines tractography through effective use of anatomical information , 2012, NeuroImage.

[51]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[52]  S. Ng,et al.  Diffusion Tensor Imaging of the Subcortical Auditory Tract in Subjects with Long-Term Unilateral Sensorineural Hearing Loss , 2009, Audiology and Neurotology.

[53]  Mara Cercignani,et al.  Twenty‐five pitfalls in the analysis of diffusion MRI data , 2010, NMR in biomedicine.

[54]  Laura Mancini,et al.  Auditory tracts identified with combined fMRI and diffusion tractography , 2014, NeuroImage.

[55]  Chun-Hung Yeh,et al.  The effect of finite diffusion gradient pulse duration on fibre orientation estimation in diffusion MRI , 2010, NeuroImage.

[56]  S. Scott,et al.  The neuroanatomical and functional organization of speech perception , 2003, Trends in Neurosciences.

[57]  Wim Van Hecke,et al.  Strategies and Challenges in DTI Analysis , 2016 .

[58]  D R Moore,et al.  Anatomy and physiology of binaural hearing. , 1991, Audiology : official organ of the International Society of Audiology.

[59]  Roland Bammer,et al.  Survivor’s Guide to DTI Acquisition , 2016 .

[60]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[61]  Alan Connelly,et al.  Investigating white matter fibre density and morphology using fixel-based analysis , 2017, NeuroImage.

[62]  A. Starr,et al.  UC Irvine UC Irvine Previously Published Works Title Pathophysiological mechanisms and functional hearing consequences of auditory neuropathy , 2015 .

[63]  K. Whittingstall,et al.  Active delineation of Meyer's loop using oriented priors through MAGNEtic tractography (MAGNET) , 2017, Human brain mapping.

[64]  Thomas R. Knösche,et al.  White matter integrity, fiber count, and other fallacies: The do's and don'ts of diffusion MRI , 2013, NeuroImage.

[65]  Jean-Philippe Thiran,et al.  Global Tractography with Embedded Anatomical Priors for Quantitative Connectivity Analysis , 2014, Front. Neurol..

[66]  J. Rademacher,et al.  Stereotaxic Localization, Intersubject Variability, and Interhemispheric Differences of the Human Auditory Thalamocortical System , 2002, NeuroImage.

[67]  J. Kaas,et al.  Subdivisions of auditory cortex and processing streams in primates. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Derek K. Jones,et al.  The effect of filter size on VBM analyses of DT-MRI data , 2005, NeuroImage.

[69]  F. Ståhlberg,et al.  Pulsatile brain movement and associated hydrodynamics studied by magnetic resonance phase imaging , 2004, Neuroradiology.

[70]  Sara Llufriu,et al.  Improved Framework for Tractography Reconstruction of the Optic Radiation , 2015, PloS one.

[71]  A. Barkovich,et al.  Variability of Homotopic and Heterotopic Callosal Connectivity in Partial Agenesis of the Corpus Callosum: A 3T Diffusion Tensor Imaging and Q-Ball Tractography Study , 2008, American Journal of Neuroradiology.

[72]  J. Lanciego,et al.  Current concepts in neuroanatomical tracing , 2000, Progress in Neurobiology.

[73]  Matthew P. G. Allin,et al.  Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography , 2011, NeuroImage.

[74]  Zoltán Molnár,et al.  Tract-Tracing in Developing Systems and in Postmortem Human Material Using Carbocyanine Dyes , 2006 .

[75]  T. Peters,et al.  High‐resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2 , 2005, Magnetic resonance in medicine.

[76]  Samuel R. Barber,et al.  Diffusion Tensor Imaging of Central Auditory Pathways in Patients with Sensorineural Hearing Loss: A Systematic Review , 2018, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[77]  Max A. Viergever,et al.  Partial volume effect as a hidden covariate in DTI analyses , 2011, NeuroImage.

[78]  Alexander Leemans,et al.  Quantitative DTI measures , 2016 .

[79]  Susumu Mori,et al.  Introduction to Diffusion Tensor Imaging: And Higher Order Models , 2013 .

[80]  Myoung-Nam Kim,et al.  Auditory neural pathway evaluation on sensorineural hearing loss using diffusion tensor imaging , 2004, Neuroreport.

[81]  Arthur W. Toga,et al.  Automated retinofugal visual pathway reconstruction with multi-shell HARDI and FOD-based analysis , 2016, NeuroImage.

[82]  A. Møller,et al.  Some forms of tinnitus may involve the extralemniscal auditory pathway , 1992, The Laryngoscope.

[83]  Gerard Blasco,et al.  Improved Assessment of Ex Vivo Brainstem Neuroanatomy With High‐Resolution MRI and DTI at 7 Tesla , 2011, Anatomical record.

[84]  C. Matthies,et al.  Probabilistic Fiber-Tracking Reveals Degeneration of the Contralateral Auditory Pathway in Patients with Vestibular Schwannoma , 2016, American Journal of Neuroradiology.

[85]  Jan Sijbers,et al.  Denoising of diffusion MRI using random matrix theory , 2016, NeuroImage.

[86]  M. Berger,et al.  Quantifying diffusion MRI tractography of the corticospinal tract in brain tumors with deterministic and probabilistic methods☆ , 2013, NeuroImage: Clinical.

[87]  J. Roerdink,et al.  A Diffusion Tensor Imaging Study on the Auditory System and Tinnitus , 2010, The open neuroimaging journal.

[88]  H. Spoendlin,et al.  Analysis of the human auditory nerve , 1989, Hearing Research.

[89]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.

[90]  Alberto Prats-Galino,et al.  Imaging white-matter pathways of the auditory system with diffusion imaging tractography. , 2015, Handbook of clinical neurology.

[91]  Daniel Rueckert,et al.  Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data , 2006, NeuroImage.

[92]  Peter Jezzard,et al.  Investigations on the efficiency of cardiac-gated methods for the acquisition of diffusion-weighted images. , 2005, Journal of magnetic resonance.

[93]  L. Astrakas,et al.  Shifting from region of interest (ROI) to voxel-based analysis in human brain mapping , 2010, Pediatric Radiology.

[94]  B. W. Murphy,et al.  The functional neuroanatomy of tinnitus , 1998, Neurology.

[95]  A. Harvey,et al.  Brainstem organization of efferent projections to the guinea pig cochlea studied using the fluorescent tracers fast blue and diamidino yellow , 1987, Experimental Brain Research.

[96]  R. Hartmann,et al.  Afferent projection patterns in the auditory brainstem in normal and congenitally deaf white cats , 1997, Hearing Research.