Molecular polarizability of semiconductor clusters and nanostructures

Abstract The interacting-induced-dipoles polarization model implemented in program PAPID is used for the calculation of the molecular dipole–dipole polarizability α . The method is tested with Si n , Ge n and Ga n As m small clusters. On varying the number of atoms, the clusters show numbers indicative of particularly polarizable structures. The results for the polarizability are in agreement with reference calculations from Chelikowsky. The bulk limit for the polarizability is estimated from the Clausius–Mossotti relationship. The polarizability trend for these clusters as a function of size is different from what one might have expected. The clusters are all more polarizable than what one might have inferred from the bulk polarizability. Previous experimental work has yielded the opposite trend for somewhat larger clusters, i.e., in this work the polarizability of clusters tends to be lower than the bulk limit and approaches this limit from below. At present, the origin of this difference is problematic. One might argue that smaller clusters need not behave like those of intermediate size. The high polarizability of small clusters is attributed to dangling bonds at the surface of the cluster. Indeed, most of the atoms within small clusters reside on the surface. In this respect, semiconductor clusters resemble metallic clusters.

[1]  Martin F. Jarrold,et al.  Nanosurface Chemistry on Size-Selected Silicon Clusters , 1991, Science.

[2]  A. Ogura,et al.  Raman spectra of size-selected silicon clusters and comparison with calculated structures , 1993, Nature.

[3]  Francisco Torrens,et al.  Molecular Polarizability of Sc and C (Fullerene and Graphite) Clusters , 2001, Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry.

[4]  Louis E. Brus,et al.  Electronic wave functions in semiconductor clusters: experiment and theory , 1986 .

[5]  Y. Kayanuma,et al.  Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. , 1988, Physical review. B, Condensed matter.

[6]  J. R. Carl,et al.  Atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities , 1972 .

[7]  Richard E. Smalley,et al.  Ultraviolet photoelectron spectroscopy of semiconductor clusters: Silicon and germanium , 1987 .

[8]  J. Applequist,et al.  Atom charge transfer in molecular polarizabilities: application of the Olson-Sundberg model to aliphatic and aromatic hydrocarbons , 1993 .

[9]  L. Mitas,et al.  Quantum Monte Carlo determination of electronic and structural properties of Sin clusters (n <= 20). , 1995, Physical review letters.

[10]  L. Silberstein XIX. Dispersion and the size of molecules of hydrogen, oxygen, and nitrogen , 1917 .

[11]  James R. Chelikowsky The Electronic and Structural Properties of Semiconductor Clusters and Nanostructures , 1999 .

[12]  Francisco Torrens,et al.  Conformational aspects of some asymmetric Diels-Alder reactions. A molecular mechanics + polarization study , 1992 .

[13]  Matthias Brack,et al.  The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches , 1993 .

[14]  Phillips,et al.  Electron-correlation energies and the structure of Si13. , 1993, Physical review. B, Condensed matter.

[15]  Steven G. Louie,et al.  Quantum theory of real materials , 1996 .

[16]  Norman L. Allinger,et al.  Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms , 1977 .

[17]  Christophe Voisin,et al.  Computation of accurate electronic molecular polarizabilities , 1992 .

[18]  Freeman,et al.  Photofragmentation of Mass-Resolved Si2-12+ clusters. , 1985, Physical review letters.

[19]  Michael R. Philpott,et al.  Dipole Davydov Splittings in Crystalline Anthracene, Tetracene, Naphthalene, and Phenanthrene , 1969 .

[20]  Walt A. de Heer,et al.  The physics of simple metal clusters: experimental aspects and simple models , 1993 .

[21]  Francisco Torrens,et al.  Polarization Force Fields for Peptides Implemented in ECEPP2 and MM2 , 2000 .

[22]  Richard W. Siegel,et al.  Research opportunities on clusters and cluster-assembled materials—A Department of Energy, Council on Materials Science Panel Report , 1989 .

[23]  L. Silberstein,et al.  VII. Molecular refractivity and atomic interaction , 1917 .

[24]  B. K. Rao,et al.  Physics and chemistry of small clusters , 1987 .

[25]  Richard W. Siegel,et al.  Synthesis, characterization, and properties of nanophase TiO_2 , 1988 .

[26]  Gerald D. Mahan,et al.  Davydov Splittings in Anthracene , 1964 .

[27]  Richard E. Smalley,et al.  Ammonia chemisorption studies on silicon cluster ions , 1991 .

[28]  H. Scheraga,et al.  Energy parameters in polypeptides. 9. Updating of geometrical parameters, nonbonded interactions, and hydrogen bond interactions for the naturally occurring amino acids , 1983 .

[29]  H. A. Stuart Die Struktur des Freien Moleküls , 1952 .

[30]  H. Scheraga,et al.  Intermolecular potentials from crystal data. 6. Determination of empirical potentials for O-H...O = C hydrogen bonds from packing configurations , 1984 .

[31]  Yousef Saad,et al.  Parallel methods and tools for predicting material properties , 2000, Comput. Sci. Eng..

[32]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[33]  L. Silberstein,et al.  L. Molecular refractivity and atomic interaction. II , 1917 .

[34]  William Rhodes,et al.  Generalized Susceptibility Theory I. Theories of Hypochromism , 1967 .

[35]  Max Born,et al.  Optik : ein Lehrbuch der elektromagnetischen Lichttheorie , 1933 .

[36]  Becker,et al.  Polarizabilities of isolated semiconductor clusters. , 1996, Physical review letters.

[37]  Phillips,et al.  Interatomic force fields for silicon microclusters. , 1991, Physical review. B, Condensed matter.

[38]  Francisco Torrens,et al.  Molecular polarizability of Sc n , C n and endohedral Sc n @C m clusters , 2000 .