Ranking to Learn and Learning to Rank: On the Role of Ranking in Pattern Recognition Applications

The last decade has seen a revolution in the theory and application of machine learning and pattern recognition. Through these advancements, variable ranking has emerged as an active and growing research area and it is now beginning to be applied to many new problems. The rationale behind this fact is that many pattern recognition problems are by nature ranking problems. The main objective of a ranking algorithm is to sort objects according to some criteria, so that, the most relevant items will appear early in the produced result list. Ranking methods can be analyzed from two different methodological perspectives: ranking to learn and learning to rank. The former aims at studying methods and techniques to sort objects for improving the accuracy of a machine learning model. Enhancing a model performance can be challenging at times. For example, in pattern classification tasks, different data representations can complicate and hide the different explanatory factors of variation behind the data. In particular, hand-crafted features contain many cues that are either redundant or irrelevant, which turn out to reduce the overall accuracy of the classifier. In such a case feature selection is used, that, by producing ranked lists of features, helps to filter out the unwanted information. Moreover, in real-time systems (e.g., visual trackers) ranking approaches are used as optimization procedures which improve the robustness of the system that deals with the high variability of the image streams that change over time. The other way around, learning to rank is necessary in the construction of ranking models for information retrieval, biometric authentication, re-identification, and recommender systems. In this context, the ranking model's purpose is to sort objects according to their degrees of relevance, importance, or preference as defined in the specific application.

[1]  Haibin Ling,et al.  Diffusion Distance for Histogram Comparison , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[2]  T. DeGroot,et al.  Can Nonverbal Cues be Used to Make Meaningful Personality Attributions in Employment Interviews? , 2009 .

[3]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[4]  Narendra Ahuja,et al.  Robust visual tracking via multi-task sparse learning , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Luc Van Gool,et al.  Beyond semi-supervised tracking: Tracking should be as simple as detection, but not simpler than recognition , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[6]  Hyoungjoo Lee,et al.  Improvement of keystroke data quality through artificial rhythms and cues , 2008, Comput. Secur..

[7]  Sungzoon Cho,et al.  Artificial Rhythms and Cues for Keystroke Dynamics Based Authentication , 2006, ICB.

[8]  Rui Caseiro,et al.  Exploiting the Circulant Structure of Tracking-by-Detection with Kernels , 2012, ECCV.

[9]  Paulo Sérgio Tenreiro Magalhães,et al.  An improved statistical keystroke dynamics algorithm , 2005 .

[10]  Jianguo Zhang,et al.  The PASCAL Visual Object Classes Challenge , 2006 .

[11]  Raj Nanavati,et al.  Biometrics: Identity Verification in a Networked World , 2002 .

[12]  Guillermo Sapiro,et al.  Online dictionary learning for sparse coding , 2009, ICML '09.

[13]  C. Carver,et al.  Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS Scales , 1994 .

[14]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Hang Li,et al.  A Short Introduction to Learning to Rank , 2011, IEICE Trans. Inf. Syst..

[16]  Fabian Monrose,et al.  Keystroke dynamics as a biometric for authentication , 2000, Future Gener. Comput. Syst..

[17]  Claudia Picardi,et al.  User authentication through keystroke dynamics , 2002, TSEC.

[18]  Norman Shapiro,et al.  Authentication by Keystroke Timing: Some Preliminary Results , 1980 .

[19]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[20]  W. Garrison CONNECTIVITY OF THE INTERSTATE HIGHWAY SYSTEM , 2005 .

[21]  Yiu-ming Cheung,et al.  Feature Selection and Kernel Learning for Local Learning-Based Clustering , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Hsinchun Chen,et al.  A framework for authorship identification of online messages: Writing-style features and classification techniques , 2006 .

[23]  Yoshua. Bengio,et al.  Learning Deep Architectures for AI , 2007, Found. Trends Mach. Learn..

[24]  Eric Horvitz,et al.  Collaborative Filtering by Personality Diagnosis: A Hybrid Memory and Model-Based Approach , 2000, UAI.

[25]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[26]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[27]  J. Hubbard,et al.  Vector Calculus, Linear Algebra, and Differential Forms: A Unified Approach (5th edition) , 2015 .

[28]  Subhransu Maji,et al.  Fast and Accurate Digit Classification , 2009 .

[29]  Sejong Oh,et al.  A novel divide-and-merge classification for high dimensional datasets , 2013, Comput. Biol. Chem..

[30]  D. Voth,et al.  Face Recognition Technology; Cognitive Radios Will Adapt to Users , 2003, IEEE Intell. Syst..

[31]  John Riedl,et al.  Analysis of recommendation algorithms for e-commerce , 2000, EC '00.

[32]  J.C. Rajapakse,et al.  SVM-RFE With MRMR Filter for Gene Selection , 2010, IEEE Transactions on NanoBioscience.

[33]  D. Bamber The area above the ordinal dominance graph and the area below the receiver operating characteristic graph , 1975 .

[34]  Donghee Yoo,et al.  A hybrid online-product recommendation system: Combining implicit rating-based collaborative filtering and sequential pattern analysis , 2012, Electron. Commer. Res. Appl..

[35]  Dong Yu,et al.  Feature engineering in Context-Dependent Deep Neural Networks for conversational speech transcription , 2011, 2011 IEEE Workshop on Automatic Speech Recognition & Understanding.

[36]  Dexin Zhang,et al.  Personal Identification Based on Iris Texture Analysis , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Jurij F. Tasic,et al.  Affective Labeling in a Content-Based Recommender System for Images , 2013, IEEE Transactions on Multimedia.

[38]  Vittorio Murino,et al.  Conversationally-inspired stylometric features for authorship attribution in instant messaging , 2012, ACM Multimedia.

[39]  Giorgio Roffo,et al.  Feature Selection Library (MATLAB Toolbox) , 2016, 1607.01327.

[40]  Marko Tkalcic,et al.  Using affective parameters in a content-based recommender system for images , 2010, User Modeling and User-Adapted Interaction.

[41]  George Karypis,et al.  A Comprehensive Survey of Neighborhood-based Recommendation Methods , 2011, Recommender Systems Handbook.

[42]  Alessandro Vinciarelli,et al.  Personality in Computational Advertising: A Benchmark , 2016, EMPIRE@RecSys.

[43]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[44]  Masoud Nikravesh,et al.  Feature Extraction - Foundations and Applications , 2006, Feature Extraction.

[45]  Jian Sun,et al.  Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Isabelle Guyon,et al.  Competitive baseline methods set new standards for the NIPS 2003 feature selection benchmark , 2007, Pattern Recognit. Lett..

[47]  Rong Hu,et al.  A Study on User Perception of Personality-Based Recommender Systems , 2010, UMAP.

[48]  P. Bonacich Power and Centrality: A Family of Measures , 1987, American Journal of Sociology.

[49]  Pat Langley,et al.  Models of Incremental Concept Formation , 1990, Artif. Intell..

[50]  Jurij F. Tasic,et al.  Relevant Context in a Movie Recommender System: Users' Opinion vs. Statistical Detection , 2012 .

[51]  Roberto Guzmán-Martínez,et al.  Feature Selection Stability Assessment Based on the Jensen-Shannon Divergence , 2011, ECML/PKDD.

[52]  M. Knapp,et al.  Nonverbal communication in human interaction , 1972 .

[53]  Simon C. K. Shiu,et al.  Unsupervised feature selection by regularized self-representation , 2015, Pattern Recognit..

[54]  Ashish Phophalia,et al.  A survey on Learning to Rank (LETOR) approaches in information retrieval , 2011, 2011 Nirma University International Conference on Engineering.

[55]  Douglas Eck,et al.  Temporal Pooling and Multiscale Learning for Automatic Annotation and Ranking of Music Audio , 2011, ISMIR.

[56]  Marco Zaffalon,et al.  Robust Feature Selection by Mutual Information Distributions , 2002, UAI.

[57]  A. Cohen,et al.  Clarifying the Linguistic Signature: Measuring Personality From Natural Speech , 2008, Journal of personality assessment.

[58]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[59]  Rich Caruana,et al.  Do Deep Nets Really Need to be Deep? , 2013, NIPS.

[60]  Pietro Perona,et al.  One-shot learning of object categories , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[61]  Frank E. Pollick,et al.  Statistical Analysis of Visual Attentional Patterns for Video Surveillance , 2013, CIARP.

[62]  P Avila Clemenshia,et al.  Click Through Rate Prediction for Display Advertisement , 2016 .

[63]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[64]  C. Ken Weidner,et al.  Experiential Learning Process: Exploring Teaching and Learning of Strategic Management Framework through the Winter Survival Exercise , 2005 .

[65]  Woojin Chang,et al.  How to measure the effectiveness of online advertising in online marketplaces , 2011, Expert Syst. Appl..

[66]  Martin Hilbert,et al.  The World’s Technological Capacity to Store, Communicate, and Compute Information , 2011, Science.

[67]  Joaquin Quiñonero Candela,et al.  Practical Lessons from Predicting Clicks on Ads at Facebook , 2014, ADKDD'14.

[68]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[69]  Kristina Lerman,et al.  Centrality metric for dynamic networks , 2010, MLG '10.

[70]  Paul S. Bradley,et al.  Feature Selection via Concave Minimization and Support Vector Machines , 1998, ICML.

[71]  Gopal K. Gupta,et al.  Identity authentication based on keystroke latencies , 1990, Commun. ACM.

[72]  M. Rahim,et al.  A measure of styles of handling interpersonal conflict. , 1983, Academy of Management journal. Academy of Management.

[73]  Antony J. Williams,et al.  Beautiful Data: The Stories Behind Elegant Data Solutions , 2009 .

[74]  Michael K. Reiter,et al.  Password hardening based on keystroke dynamics , 2002, International Journal of Information Security.

[75]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[76]  Roberto Battiti,et al.  Using mutual information for selecting features in supervised neural net learning , 1994, IEEE Trans. Neural Networks.

[77]  Sayan Mukherjee,et al.  Feature Selection for SVMs , 2000, NIPS.

[78]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[79]  Kenneth Revett A Bioinformatics Based Approach to Behavioural Biometrics , 2007, 2007 Frontiers in the Convergence of Bioscience and Information Technologies.

[80]  Cristina Granziera,et al.  Infinite feature selection on shore-based biomarkers reveals connectivity modulation after stroke , 2016, 2016 International Workshop on Pattern Recognition in Neuroimaging (PRNI).

[81]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[82]  Steve R. Gunn,et al.  Result Analysis of the NIPS 2003 Feature Selection Challenge , 2004, NIPS.

[83]  Heinz Ulrich Hoppe,et al.  A closer look on social presence as a causing factor in computer-mediated collaboration , 2011, Comput. Hum. Behav..

[84]  Marco Cristani,et al.  Statistical Analysis of Personality and Identity in Chats Using a Keylogging Platform , 2014, ICMI.

[85]  Junseok Kwon,et al.  Visual tracking decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[86]  N. Markel,et al.  Personality traits associated with voice types , 1972, Journal of psycholinguistic research.

[87]  Bolei Zhou,et al.  Learning Deep Features for Scene Recognition using Places Database , 2014, NIPS.

[88]  Ludmila I. Kuncheva,et al.  A stability index for feature selection , 2007, Artificial Intelligence and Applications.

[89]  Geoffrey E. Hinton Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.

[90]  Giorgio Roffo,et al.  Towards Personality-Aware Recommendation , 2016, ArXiv.

[91]  Simone Melzi,et al.  Online Feature Selection for Visual Tracking , 2016, BMVC.

[92]  Jianzhong Wang,et al.  An Improved Feature Selection Based on Effective Range for Classification , 2014, TheScientificWorldJournal.

[93]  Zhenyu He,et al.  The Visual Object Tracking VOT2016 Challenge Results , 2016, ECCV Workshops.

[94]  T. Wieczorek,et al.  Comparison of feature ranking methods based on information entropy , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).

[95]  Pablo M. Granitto,et al.  SVM Based Feature Selection: Why Are We Using the Dual? , 2010, IBERAMIA.

[96]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[97]  Efstathios Stamatatos,et al.  A survey of modern authorship attribution methods , 2009, J. Assoc. Inf. Sci. Technol..

[98]  Benjamin C. M. Fung,et al.  A unified data mining solution for authorship analysis in anonymous textual communications , 2013, Inf. Sci..

[99]  O. John,et al.  Measuring personality in one minute or less: A 10-item short version of the Big Five Inventory in English and German , 2007 .

[100]  Ravi Kiran Sarvadevabhatla,et al.  A Taxonomy of Deep Convolutional Neural Nets for Computer Vision , 2016, Front. Robot. AI.

[101]  John Riedl,et al.  Is seeing believing?: how recommender system interfaces affect users' opinions , 2003, CHI '03.

[102]  Maks Ovsjanikov,et al.  Discrete Time Evolution Process Descriptor for Shape Analysis and Matching , 2018, ACM Trans. Graph..

[103]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[104]  Andrea Vedaldi,et al.  MatConvNet: Convolutional Neural Networks for MATLAB , 2014, ACM Multimedia.

[105]  F. R. Pitts A GRAPH THEORETIC APPROACH TO HISTORICAL GEOGRAPHY , 1965 .

[106]  David Zhang,et al.  Automated personal identification by palmprint , 1998 .

[107]  Mark Goadrich,et al.  The relationship between Precision-Recall and ROC curves , 2006, ICML.

[108]  A. Pruyn,et al.  You are what you wear: Brand personality influences on consumer impression formation , 2007 .

[109]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[110]  Gregory Shalhoub,et al.  Stylometry System - Use Cases and Feasibility Study , 2010 .

[111]  Dongsong Zhang,et al.  Can online behavior unveil deceivers? - an exploratory investigation of deception in instant messaging , 2004, 37th Annual Hawaii International Conference on System Sciences, 2004. Proceedings of the.

[112]  Yoon Ho Cho,et al.  Collaborative filtering with ordinal scale-based implicit ratings for mobile music recommendations , 2010, Inf. Sci..

[113]  Gérard G. Medioni,et al.  Context tracker: Exploring supporters and distracters in unconstrained environments , 2011, CVPR 2011.

[114]  R. Feynman,et al.  Space-Time Approach to Non-Relativistic Quantum Mechanics , 1948 .

[115]  Simone Melzi,et al.  Object Tracking via Dynamic Feature Selection Processes , 2016, ArXiv.

[116]  R. G. Morris D.O. Hebb: The Organization of Behavior, Wiley: New York; 1949 , 1999, Brain Research Bulletin.

[117]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[118]  Matthew Richardson,et al.  Predicting clicks: estimating the click-through rate for new ads , 2007, WWW '07.

[119]  Vittorio Murino,et al.  Symmetry-driven accumulation of local features for human characterization and re-identification , 2013, Comput. Vis. Image Underst..

[120]  Mark H. Davis Measuring individual differences in empathy: Evidence for a multidimensional approach. , 1983 .

[121]  Simone Melzi,et al.  Ranking to Learn: - Feature Ranking and Selection via Eigenvector Centrality , 2016, NFMCP@PKDD/ECML.

[122]  Daw-Tung Lin Computer-access authentication with neural network based keystroke identity verification , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[123]  Max Coltheart,et al.  The MRC Psycholinguistic Database , 1981 .

[124]  J. Pennebaker,et al.  Linguistic styles: language use as an individual difference. , 1999, Journal of personality and social psychology.

[125]  Andree E. Widjaja,et al.  Facebook C2C social commerce: A study of online impulse buying , 2016, Decis. Support Syst..

[126]  Hiroshi Motoda,et al.  Computational Methods of Feature Selection , 2022 .

[127]  Marco Cristani,et al.  Just the Way You Chat: Linking Personality, Style and Recognizability in Chats , 2014, HBU.

[128]  Trevor Darrell,et al.  The Pyramid Match Kernel: Efficient Learning with Sets of Features , 2007, J. Mach. Learn. Res..

[129]  Tracy L. Tuten,et al.  Personality determinants of online shopping : Explaining online purchase intentions using a hierarchical approach , 2007 .

[130]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[131]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[132]  Zi Huang,et al.  Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence ℓ2,1-Norm Regularized Discriminative Feature Selection for Unsupervised Learning , 2022 .

[133]  Shai Avidan,et al.  Locally Orderless Tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[134]  Alessandro Perina,et al.  Person re-identification by symmetry-driven accumulation of local features , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[135]  M. Akila,et al.  Biometric personal authentication using keystroke dynamics: A review , 2011, Appl. Soft Comput..

[136]  Bojan Cukic,et al.  Evaluating the Reliability of Credential Hardening through Keystroke Dynamics , 2006, 2006 17th International Symposium on Software Reliability Engineering.

[137]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[138]  D. Holmes The Evolution of Stylometry in Humanities Scholarship , 1998 .

[139]  S. Gosling,et al.  Personality in its natural habitat: manifestations and implicit folk theories of personality in daily life. , 2006, Journal of personality and social psychology.

[140]  Jaana Kekäläinen,et al.  Cumulated gain-based evaluation of IR techniques , 2002, TOIS.

[141]  D. Watson,et al.  Development and validation of brief measures of positive and negative affect: the PANAS scales. , 1988, Journal of personality and social psychology.

[142]  Maja Pantic,et al.  Social signal processing: Survey of an emerging domain , 2009, Image Vis. Comput..

[143]  Stan Szpakowicz,et al.  Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for Performance Evaluation , 2006, Australian Conference on Artificial Intelligence.

[144]  Andrew Zisserman,et al.  Return of the Devil in the Details: Delving Deep into Convolutional Nets , 2014, BMVC.

[145]  Hsinchun Chen,et al.  Writeprints: A stylometric approach to identity-level identification and similarity detection in cyberspace , 2008, TOIS.

[146]  Khalid Saeed,et al.  A Keystroke Dynamics Based System for User Identification , 2008, 2008 7th Computer Information Systems and Industrial Management Applications.

[147]  Michael J. Pazzani,et al.  Learning and Revising User Profiles: The Identification of Interesting Web Sites , 1997, Machine Learning.

[148]  Robert T. Collins,et al.  An Open Source Tracking Testbed and Evaluation Web Site , 2005 .

[149]  Geoffrey E. Hinton,et al.  Simplifying Neural Networks by Soft Weight-Sharing , 1992, Neural Computation.

[150]  Xia Liu,et al.  Enhanced User Authentication Through Keystroke Biometrics , 2004 .

[151]  J. Rubin,et al.  Negotiation , 1983 .

[152]  Luc Van Gool,et al.  The 2005 PASCAL Visual Object Classes Challenge , 2005, MLCW.

[153]  Haibin Ling,et al.  Real time robust L1 tracker using accelerated proximal gradient approach , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[154]  Deng Cai,et al.  Laplacian Score for Feature Selection , 2005, NIPS.

[155]  Junzhou Huang,et al.  Robust tracking using local sparse appearance model and K-selection , 2011, CVPR 2011.

[156]  Wentong Li,et al.  Estimating conversion rate in display advertising from past erformance data , 2012, KDD.

[157]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[158]  Vittorio Murino,et al.  A unifying framework for vector-valued manifold regularization and multi-view learning , 2013, ICML.

[159]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[160]  Bin Shen,et al.  Online robust image alignment via iterative convex optimization , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[161]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[162]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[163]  Dong Yu,et al.  Conversational Speech Transcription Using Context-Dependent Deep Neural Networks , 2012, ICML.

[164]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[165]  S. J. Shepherd Continuous authentication by analysis of keyboard typing characteristics , 1995 .

[166]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[167]  Lai Weng Kin,et al.  Enhanced user authentication through typing biometrics with artificial neural networks and k-nearest neighbor algorithm , 2001, Conference Record of Thirty-Fifth Asilomar Conference on Signals, Systems and Computers (Cat.No.01CH37256).

[168]  Shlomo Argamon,et al.  Automatically profiling the author of an anonymous text , 2009, CACM.

[169]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[170]  Ronald L. Graham,et al.  Concrete Mathematics, a Foundation for Computer Science , 1991, The Mathematical Gazette.

[171]  Jason Weston,et al.  Gene Selection for Cancer Classification using Support Vector Machines , 2002, Machine Learning.

[172]  Yue Han,et al.  Stable Gene Selection from Microarray Data via Sample Weighting , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[173]  J. Pearl Causal inference in statistics: An overview , 2009 .

[174]  Xiaolong Deng,et al.  MapReduce based Betweenness Approximation Engineering in Large Scale Graph , 2012 .

[175]  Yoshua Bengio,et al.  Understanding the difficulty of training deep feedforward neural networks , 2010, AISTATS.

[176]  Beatrice Rammstedt The 10-Item Big Five Inventory: Norm Values and Investigation of Sociodemographic Effects Based on a , 2007 .

[177]  Christophe Rosenberger,et al.  Keystroke dynamics authentication for collaborative systems , 2009, 2009 International Symposium on Collaborative Technologies and Systems.

[178]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[179]  Donna K. Harman,et al.  Overview of the TREC 2002 Novelty Track , 2002, TREC.

[180]  Jiawei Han,et al.  Generalized Fisher Score for Feature Selection , 2011, UAI.

[181]  E Bergshoeff,et al.  Ten Physical Applications of Spectral Zeta Functions , 1996 .

[182]  P. Shum,et al.  Computing matrix inversion with optical networks. , 2013, Optics express.

[183]  Ming-Hsuan Yang,et al.  Visual tracking with online Multiple Instance Learning , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[184]  Sharath Pankanti,et al.  The relation between the ROC curve and the CMC , 2005, Fourth IEEE Workshop on Automatic Identification Advanced Technologies (AutoID'05).

[185]  Haizhou Li,et al.  An overview of text-independent speaker recognition: From features to supervectors , 2010, Speech Commun..

[186]  Marilyn A. Walker,et al.  Using Linguistic Cues for the Automatic Recognition of Personality in Conversation and Text , 2007, J. Artif. Intell. Res..

[187]  Andrew Beng Jin Teoh,et al.  A Survey of Keystroke Dynamics Biometrics , 2013, TheScientificWorldJournal.

[188]  J. Patton,et al.  Factor structure of the Barratt impulsiveness scale. , 1995, Journal of clinical psychology.

[189]  Deng Cai,et al.  Unsupervised feature selection for multi-cluster data , 2010, KDD.

[190]  E. Lander,et al.  Gene expression correlates of clinical prostate cancer behavior. , 2002, Cancer cell.

[191]  Vittorio Murino,et al.  Reading between the turns: Statistical modeling for identity recognition and verification in chats , 2013, 2013 10th IEEE International Conference on Advanced Video and Signal Based Surveillance.

[192]  Ran R. Hassin,et al.  Facing faces: studies on the cognitive aspects of physiognomy. , 2000, Journal of personality and social psychology.

[193]  Bo Zhou,et al.  Sharp bounds on the spectral radius of a nonnegative matrix , 2013 .

[194]  Laura Sevilla-Lara,et al.  Distribution fields for tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[195]  U. Alon,et al.  Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[196]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[197]  Simon Baron-Cohen,et al.  Empathising and Systemising in Adults with and without Asperger Syndrome , 2004, Journal of autism and developmental disorders.

[198]  Simone Melzi,et al.  Feature Selection via Eigenvector Centrality , 2016 .

[199]  Jan H. P. Eloff,et al.  Enhanced Password Authentication through Fuzzy Logic , 1997, IEEE Expert.

[200]  Kilian Q. Weinberger,et al.  Deep Networks with Stochastic Depth , 2016, ECCV.

[201]  C.S. Leberknight,et al.  An Investigation into the Efficacy of Keystroke Analysis for Perimeter Defense and Facility Access , 2008, 2008 IEEE Conference on Technologies for Homeland Security.

[202]  Andrew L. Maas Rectifier Nonlinearities Improve Neural Network Acoustic Models , 2013 .

[203]  Xuerui Wang,et al.  Click-Through Rate Estimation for Rare Events in Online Advertising , 2011 .

[204]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[205]  Michael Felsberg,et al.  The Visual Object Tracking VOT2013 Challenge Results , 2013, ICCV 2013.

[206]  Lee Luan Ling,et al.  User authentication through typing biometrics features , 2005 .

[207]  Todd,et al.  Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning , 2002, Nature Medicine.

[208]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[209]  Marco Cristani,et al.  Infinite Feature Selection , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[210]  Yoshua Bengio,et al.  Série Scientifique Scientific Series Incorporating Second-order Functional Knowledge for Better Option Pricing Incorporating Second-order Functional Knowledge for Better Option Pricing , 2022 .

[211]  David W. Aha,et al.  Artificial Intelligence , 2014 .

[212]  Michael J. Pazzani,et al.  Learning Collaborative Information Filters , 1998, ICML.

[213]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[214]  Robert T. Collins,et al.  Mean-shift blob tracking through scale space , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[215]  Junseok Kwon,et al.  Tracking by Sampling Trackers , 2011, 2011 International Conference on Computer Vision.

[216]  Gert R. G. Lanckriet,et al.  Metric Learning to Rank , 2010, ICML.

[217]  Michael Felsberg,et al.  The Visual Object Tracking VOT2015 Challenge Results , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[218]  Aypar Uslu,et al.  The Effects of Personality Traits and Website Quality on Online Impulse Buying , 2015 .

[219]  Jiankun Hu,et al.  A k-Nearest Neighbor Approach for User Authentication through Biometric Keystroke Dynamics , 2008, 2008 IEEE International Conference on Communications.

[220]  Nebojsa Jojic,et al.  Feature Selection Using Counting Grids: Application to Microarray Data , 2012, SSPR/SPR.

[221]  Woojin Chang Reliable Keystroke Biometric System Based on a Small Number of Keystroke Samples , 2006, ETRICS.

[222]  Edwin R. Hancock,et al.  A Graph-Based Approach to Feature Selection , 2011, GbRPR.

[223]  Huchuan Lu,et al.  Robust object tracking via sparsity-based collaborative model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[224]  S. Ramaswamy,et al.  Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. , 2002, Cancer research.

[225]  Michael J. Pazzani,et al.  User Modeling for Adaptive News Access , 2000, User Modeling and User-Adapted Interaction.

[226]  Mihir Sen,et al.  Mathematical Methods in Engineering , 2007 .

[227]  The Development of a Pressure-based Typing Biometrics User Authentication System , 2011 .

[228]  Mohammad S. Obaidat,et al.  Verification of computer users using keystroke dynamics , 1997, IEEE Trans. Syst. Man Cybern. Part B.

[229]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[230]  Yu Zhong,et al.  Keystroke Dynamics User Authentication Based on Gaussian Mixture Model and Deep Belief Nets , 2013 .

[231]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.

[232]  Yanxi Liu,et al.  Online Selection of Discriminative Tracking Features , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[233]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[234]  Benjamin Schrauwen,et al.  Deep content-based music recommendation , 2013, NIPS.

[235]  J. Mowen The 3M Model of Motivation and Personality: Theory and Empirical Applications to Consumer Behavior , 1999 .

[236]  George M. Mohay,et al.  Mining e-mail content for author identification forensics , 2001, SGMD.

[237]  Michael Felsberg,et al.  Adaptive Color Attributes for Real-Time Visual Tracking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[238]  Maja Pantic,et al.  Social Signal Processing , 2017 .

[239]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[240]  Nicu Sebe,et al.  Tell Me What You Like and I'll Tell You What You Are: Discriminating Visual Preferences on Flickr Data , 2012, ACCV.

[241]  Anton van den Hengel,et al.  Learning to rank in person re-identification with metric ensembles , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[242]  Fuhui Long,et al.  Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy , 2003, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[243]  Christine L. MacKenzie,et al.  Computer user verification using login string keystroke dynamics , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[244]  James W. Pennebaker,et al.  Linguistic Inquiry and Word Count (LIWC2007) , 2007 .

[245]  Jiri Matas,et al.  P-N learning: Bootstrapping binary classifiers by structural constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[246]  Xiaojin Zhu,et al.  Improving Diversity in Ranking using Absorbing Random Walks , 2007, NAACL.

[247]  Angela Orebaugh,et al.  Classification of Instant Messaging Communications for Forensics Analysis , 2009 .

[248]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[249]  Vittorio Murino,et al.  Trusting Skype: Learning the Way People Chat for Fast User Recognition and Verification , 2013, 2013 IEEE International Conference on Computer Vision Workshops.

[250]  Ciprian Dobre,et al.  Parallel Programming Paradigms and Frameworks in Big Data Era , 2013, International Journal of Parallel Programming.

[251]  Cordelia Schmid,et al.  Learning Color Names for Real-World Applications , 2009, IEEE Transactions on Image Processing.

[252]  Patrick Pérez,et al.  Color-Based Probabilistic Tracking , 2002, ECCV.

[253]  S. P. Ghrera,et al.  Time efficient ranking system on map reduce framework , 2015, 2015 Third International Conference on Image Information Processing (ICIIP).

[254]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[255]  Alex Pentland,et al.  Honest Signals - How They Shape Our World , 2008 .

[256]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[257]  Jay F. Nunamaker,et al.  Stylometric Identification in Electronic Markets: Scalability and Robustness , 2008, J. Manag. Inf. Syst..