Solid State Lasers XVII: Technology and Devices

It is astonishing how long it can take from the first idea to the industrial success of a laser technology product. Three laser technologies in which TRUMPF participated will be investigated from conception to realization. The first case study focuses on the diffusion cooled coaxial CO2 laser geometry with diffraction limited resonators. The second case study highlights some of the stages along the very successful route to implementation of the thin disk laser; from the conception at the IFSW and the ITP, both in Stuttgart, to the successful industrial installations in automotive applications. Finally the development of high power diodes for diode pumped solid state lasers is also discussed.

[1]  Sergey Kobtsev,et al.  Ultra-narrow-linewidth combined CW Ti:sapphire/dye laser for atom cooling and high-precision spectroscopy , 2007, SPIE LASE.

[2]  Q-switched hybrid MOPA laser system based on Yb fibre with side pumping by single source , 2009, LASE.

[3]  Uwe Habich,et al.  Azimuthally unstable resonators for high-power CO/sub 2/ lasers with annular gain media , 1994 .

[4]  M. Hofer,et al.  Advances in fiber delivery of ultrashort pulses at 800 nm , 2008, SPIE LASE.

[5]  Václav Škoda,et al.  Solid state saturable absorbers for Q-switching at 1 and 1.3μm: investigation and modeling , 2008, SPIE LASE.

[6]  Hans Opower,et al.  Diode-Pumped High-Power Solid-State Laser: Concept and First Results with Yb:YAG , 2004 .

[7]  Daniel Palanker,et al.  Solid state lasers for wide-field CARS microscopy , 2009, LASE.

[8]  W. Sibbett,et al.  High-power Kerr-lens mode-locked ytterbium lasers , 2008, SPIE LASE.

[9]  Peter Becker,et al.  Single-frequency Nd:YGG laser at 935 nm for future water-vapour DIAL systems , 2009, LASE.

[10]  Robert R. Alfano,et al.  Study of optical centers with near-infrared emission in germanate glasses doped with 6p (Bi, Pb) and 5p (Sn, Sb) ions , 2009, LASE.

[11]  Klaus Petermann,et al.  Quenching processes in Yb lasers: correlation to the valence stability of the Yb ion , 2009, LASE.

[12]  J. Sebastian,et al.  Increased power of broad-area lasers (808nm/980nm) and applicability to 10-mm bars with up to 1000Watt QCW , 2007, SPIE LASE.

[13]  Howard J. Baker,et al.  Similarity and scaling in diffusion-cooled RF-excited carbon dioxide lasers , 1994 .

[14]  D. Garbuzov,et al.  High-power 0.8 mu m InGaAsP-GaAs SCH SQW lasers , 1991 .

[15]  Adolf Giesen,et al.  50-kHz, 400-μJ, sub-100-fs pulses from a thin disk laser amplifier , 2009, LASE.

[16]  U. Keller,et al.  Femtosecond Yb:YAG laser using semiconductor saturable absorbers. , 1995, Optics letters.

[17]  R. Paschotta Power scalability as a precise concept for the evaluation of laser architectures , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[18]  A. Giesen,et al.  Multiwatt diode-pumped Yb:YAG thin disk laser continuously tunable between 1018 and 1053 nm. , 1995, Optics letters.

[19]  A. Giesen,et al.  Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[20]  Junhai Liu,et al.  Continuous-wave and Q-switched laser operation of the disordered Yb:Ca3(NbGa)2-xGa3O12 crystal , 2009, LASE.

[21]  Stephen G. Anderson,et al.  Innovation opens the door for next wave of success , 2008 .

[22]  Robert W. Schoenlein,et al.  A high-average power femtosecond laser for synchrotron light source applications , 2007, SPIE LASE.

[23]  Adolf Giesen,et al.  100 W TEM00 Operation of Yb:YAG Thin Disc Laser with High Efficiency , 1998 .

[24]  Junhai Liu,et al.  Q-switched laser operation of Yb-doped NaGd(WO4)2 and NaY(WO4)2 crystals , 2008, SPIE LASE.

[25]  John C. Connolly,et al.  Super-high-power operation of 0.98-μm InGaAs(P)/InGaP/GaAs-broadened waveguide separate confinement heterostructure quantum well diode lasers , 1999, Photonics West.

[26]  Sergey Kobtsev,et al.  Wide-autoscanned narrow-line tunable system based on CW Ti:Sapphire/dye laser for high-precision experiments in nanophysics , 2009, LASE.

[27]  N. Blanchot,et al.  Design of PETAL project main amplifier , 2009, LASE.

[28]  Sascha Weiler,et al.  High-energy ultrafast thin-disk oscillators , 2009, LASE.

[29]  Frank F. Wu Tunable pulsed forsterite laser operating at room temperature , 2008, SPIE LASE.

[30]  J. Löhring,et al.  Diode pumped Nd:YGG laser for direct generation of pulsed 935 nm radiation for water vapour measurements , 2007, SPIE LASE.

[31]  Keming Du Unique performances and favourable applications of INNOSLAB lasers , 2009, LASE.

[32]  A. Giesen,et al.  A 1-kW CW thin disc laser , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[33]  Václav Škoda,et al.  High-efficient room-temperature CW operating Tm:YAP laser with microchip resonator , 2009, LASE.

[34]  Ruben Zadoyan,et al.  Multimodal ultrafast spectroscopy system based on 35 fs Ti:Sapphire CPA laser , 2009, LASE.

[35]  Duncan P. Hand,et al.  Ultrafast optical parametric oscillators for spectroscopy , 2009, LASE.

[36]  M. Maiorov,et al.  1400 - 1480 nm ridge-waveguide pump lasers with 1 watt CW output power for EDFA and Raman amplification , 2001, OFC 2001. Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition (IEEE Cat. 01CH37171).

[37]  Holger Schlüter,et al.  Thermal and strain characteristics of high-power 940 nm laser arrays mounted with AuSn and In solders , 2007, SPIE LASE.

[38]  J. Harris,et al.  Wide horizons for optical trapping: simultaneous optical manipulation and confocal imaging of live T cells at low magnification , 2009, LASE.

[39]  H. C. Liang,et al.  High-peak-power flashlamp-pumped passively Q-switched Nd:YAG laser with AlGaInAs quantum wells as a saturable absorber , 2008, SPIE LASE.

[40]  D. V. Martyshkin,et al.  Chromium doped ZnSe and ZnS gain media for optically and electrically pumped mid-IR lasers , 2009, LASE.

[41]  Miroslav Čech,et al.  Quasi-continuously pumped operation of 2.4% doped crystalline Nd:YAG in a bounce geometry , 2009, LASE.

[42]  Lei Xu,et al.  Generation of programmable temporal pulse shape and applications in micromachining , 2009, LASE.

[43]  Michal Nemec,et al.  Cr:ZnSe laser crystal grown by Bridgeman technique: characteristics and laser performance , 2007, SPIE LASE.

[44]  Zhenhua Zhang,et al.  Selective removal of dielectric layers using picosecond UV pulses , 2009, LASE.

[45]  S. A. Bakhramov,et al.  Ceramic Nd3+:Cr3+:YAG laser pumped by high power concentrated solar flux , 2008, SPIE LASE.

[46]  Sascha Weiler,et al.  The broad applicability of the disk laser principle: from CW to ps , 2009, LASE.

[47]  Ingo Rimke,et al.  Short-pulse-OPO for near-infrared bandwidths up to 150 nm , 2009, LASE.

[48]  Kenshi Fukumitsu,et al.  Compact, rigid, and high-power ultrafast laser system applying a glass-block cavity , 2009, LASE.

[49]  C Jordan,et al.  High performance laser diode bars with aluminum-free active regions. , 1999, Optics express.

[50]  Adolf Giesen,et al.  Thin disk laser: power scaling to the kW regime in fundamental mode operation , 2009, LASE.

[51]  Michal Nemec,et al.  Diode pumped Tm:YAP laser for eye microsurgery , 2008, SPIE LASE.

[52]  Narasimha S. Prasad,et al.  Light-matter interaction processes behind intracavity mode-locking devices , 2009, LASE.

[53]  E. Georgiou,et al.  A new compact laser source for portable LIBS applications , 2008, SPIE LASE.