Extension of second moment analysis to vector-valued and matrix-valued functions

[1]  H. W. Turnbull A Matrix Form of Taylor's Theorem , 1930 .

[2]  R. Bellman Limit theorems for non-commutative operations. I. , 1954 .

[3]  Richard Bellman,et al.  Introduction to Matrix Analysis , 1972 .

[4]  Masanobu Shinozuka,et al.  Monte Carlo solution of structural dynamics , 1972 .

[5]  W. Vetter Matrix Calculus Operations and Taylor Expansions , 1973 .

[6]  R. Freeze A stochastic‐conceptual analysis of one‐dimensional groundwater flow in nonuniform homogeneous media , 1975 .

[7]  Joe Brewer,et al.  Kronecker products and matrix calculus in system theory , 1978 .

[8]  James L. Smith,et al.  A stochastic analysis of steady-state groundwater flow in a bounded domain , 1978 .

[9]  R. Allan Freeze,et al.  Stochastic analysis of steady state groundwater flow in a bounded domain: 2. Two‐dimensional simulations , 1979 .

[10]  Humberto Contreras,et al.  The stochastic finite-element method , 1980 .

[11]  T. K. Caughey,et al.  On the stability of linear and non-linear stochastic transformations , 1981 .

[12]  Michael D. Dettinger,et al.  First order analysis of uncertainty in numerical models of groundwater flow part: 1. Mathematical development , 1981 .

[13]  Gadiel Seroussi,et al.  On the Arithmetic Complexity of Matrix Kronecker Powers , 1983, Inf. Process. Lett..

[14]  F. Ma Stability Theory of Stochastic Difference Systems , 1983 .

[15]  Wilson H. Tang,et al.  Decision, risk and reliability , 1984 .

[16]  Fai Ma,et al.  Approximate analysis of a class of linear stochastic systems with colored noise parameters , 1986 .