A reduction of the resonant three-wave interaction to the generic sixth Painlevé equation
暂无分享,去创建一个
[1] Saburo Kakei,et al. The sixth Painleve equation as similarity reduction of b gl 3 hierarchy , 2005, nlin/0508021.
[2] R. Conte,et al. On the Lax pairs of the continuous and discrete sixth Painlevé equations , 2003 .
[3] J. Maillard. Polynomial Growth for Birational Mappings from Four-State Spin Edge Models , 2003 .
[4] M. Mazzocco. Painlevé sixth equation as isomonodromic deformations equation of an irregular system , 2002 .
[5] Robert Conte,et al. The Painlevé approach to nonlinear ordinary differential equations, The Painlevé property, one century , 1999 .
[6] C. Gilson,et al. THREE-DIMENSIONAL THREE-WAVE INTERACTIONS : A BILINEAR APPROACH , 1998 .
[7] J. Harnad. Dual isomonodromic deformations and moment maps to loop algebras , 1993, hep-th/9301076.
[8] C. M. Cosgrove,et al. Painlevé Classification of a Class of Differential Equations of the Second Order and Second Degree , 1993 .
[9] A. V. Kitaev,et al. On similarity reductions of the three-wave resonant system to the Painlevé equations , 1990 .
[10] Luigi Martina,et al. Analysis and applications of the symmetry group of the multidimensional three-wave resonant interaction problem , 1989 .
[11] A. S. Fokas,et al. The scaling reduction of the three-wave resonant system and the Painlevé VI equation , 1986 .
[12] M. Tabor,et al. The Painlevé property for partial differential equations , 1983 .
[13] Michio Jimbo,et al. Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III , 1981 .
[14] M. Jimbo,et al. Monodromy perserving deformation of linear ordinary differential equations with rational coefficients. II , 1981 .
[15] M. Jimbo,et al. Monodromy Preserving Deformations Of Linear Differential Equations With Rational Coefficients. 1. , 1981 .
[16] M. Ablowitz,et al. A connection between nonlinear evolution equations and ordinary differential equations of P‐type. II , 1980 .
[17] M. Ablowitz,et al. Nonlinear Evolution Equations-Two and Three Dimensions , 1975 .
[18] Vladimir E. Zakharov,et al. Resonant interaction of wave packets in nonlinear media , 1973 .
[19] F. Bureau,et al. Transformées algébriques des équations du second ordre dont l'intégrale générale est à points critiques fixes , 1972 .
[20] M. Rosenbluth,et al. NONLINEAR INTERACTIONS OF POSITIVE AND NEGATIVE ENERGY MODES IN RAREFIED PLASMAS. I. , 1969 .
[21] J. Chazy,et al. Sur les équations différentielles du troisième ordre et d'ordre supérieur dont l'intégrale générale a ses points critiques fixes , 1911 .
[22] Richard P. Fuchs. Sur quelque équations différentielles linéaires du second ordre , 1905 .
[23] E. Vessiot. Sur quelques équations différentielles ordinaires du second ordre , 1895 .