A reduction of the resonant three-wave interaction to the generic sixth Painlevé equation

Among the reductions of the resonant three-wave interaction system to six-dimensional differential systems, one of them has been specifically mentioned as being linked to the generic sixth Painleve equation P6. We derive this link explicitly, and we establish the connection to a three-degree-of-freedom Hamiltonian previously considered for P6.

[1]  Saburo Kakei,et al.  The sixth Painleve equation as similarity reduction of b gl 3 hierarchy , 2005, nlin/0508021.

[2]  R. Conte,et al.  On the Lax pairs of the continuous and discrete sixth Painlevé equations , 2003 .

[3]  J. Maillard Polynomial Growth for Birational Mappings from Four-State Spin Edge Models , 2003 .

[4]  M. Mazzocco Painlevé sixth equation as isomonodromic deformations equation of an irregular system , 2002 .

[5]  Robert Conte,et al.  The Painlevé approach to nonlinear ordinary differential equations, The Painlevé property, one century , 1999 .

[6]  C. Gilson,et al.  THREE-DIMENSIONAL THREE-WAVE INTERACTIONS : A BILINEAR APPROACH , 1998 .

[7]  J. Harnad Dual isomonodromic deformations and moment maps to loop algebras , 1993, hep-th/9301076.

[8]  C. M. Cosgrove,et al.  Painlevé Classification of a Class of Differential Equations of the Second Order and Second Degree , 1993 .

[9]  A. V. Kitaev,et al.  On similarity reductions of the three-wave resonant system to the Painlevé equations , 1990 .

[10]  Luigi Martina,et al.  Analysis and applications of the symmetry group of the multidimensional three-wave resonant interaction problem , 1989 .

[11]  A. S. Fokas,et al.  The scaling reduction of the three-wave resonant system and the Painlevé VI equation , 1986 .

[12]  M. Tabor,et al.  The Painlevé property for partial differential equations , 1983 .

[13]  Michio Jimbo,et al.  Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III , 1981 .

[14]  M. Jimbo,et al.  Monodromy perserving deformation of linear ordinary differential equations with rational coefficients. II , 1981 .

[15]  M. Jimbo,et al.  Monodromy Preserving Deformations Of Linear Differential Equations With Rational Coefficients. 1. , 1981 .

[16]  M. Ablowitz,et al.  A connection between nonlinear evolution equations and ordinary differential equations of P‐type. II , 1980 .

[17]  M. Ablowitz,et al.  Nonlinear Evolution Equations-Two and Three Dimensions , 1975 .

[18]  Vladimir E. Zakharov,et al.  Resonant interaction of wave packets in nonlinear media , 1973 .

[19]  F. Bureau,et al.  Transformées algébriques des équations du second ordre dont l'intégrale générale est à points critiques fixes , 1972 .

[20]  M. Rosenbluth,et al.  NONLINEAR INTERACTIONS OF POSITIVE AND NEGATIVE ENERGY MODES IN RAREFIED PLASMAS. I. , 1969 .

[21]  J. Chazy,et al.  Sur les équations différentielles du troisième ordre et d'ordre supérieur dont l'intégrale générale a ses points critiques fixes , 1911 .

[22]  Richard P. Fuchs Sur quelque équations différentielles linéaires du second ordre , 1905 .

[23]  E. Vessiot Sur quelques équations différentielles ordinaires du second ordre , 1895 .