Functional Anatomic Models of Language: Assembling the Pieces

In the past few years, a series of influential review articles have summarized the state of the art with respect to cortical models of language organization. The present article is a mini-review and conceptual meta-analysis of several of the most prominent recent contributions. Based on the models, the authors extract some generalizations to arrive at a more robust model that 1) does justice to the range of neurological data, 2) is more connected to research in linguistics and psycholinguistics, and 3) stimulates hypothesis-driven research in this domain. In particular, the article attempts to unify a few of the current large-scale models of the functional neuroanatomy of language in a more principled manner. First, the authors argue that the relevant type of processing in a given cortical area, that is, memorizing (temporal cortex) versus analyzing (parietal) versus synthesizing (frontal), lies at the basis of local neuronal structure and function. Second, from an anatomic perspective, more dorsal regions within each of these (temporal, parietal, and frontal) systems specialize more in phonological processing, middle areas in syntactic processing, and more ventral areas in semantic processing. NEUROSCIENTIST 14(1):119—127, 2008.

[1]  G. Hickok,et al.  Auditory–Motor Interaction Revealed by fMRI: Speech, Music, and Working Memory in Area Spt , 2003 .

[2]  A. Damasioa,et al.  Neural systems behind word and concept retrieval , 2004 .

[3]  P. Hagoort On Broca, brain, and binding: a new framework , 2005, Trends in Cognitive Sciences.

[4]  Matthew H. Davis,et al.  The neural mechanisms of speech comprehension: fMRI studies of semantic ambiguity. , 2005, Cerebral cortex.

[5]  Ellen Bialystok,et al.  Handbook of Neurolinguistics , 1998 .

[6]  G. Humphreys,et al.  Segregating Semantic from Phonological Processes during Reading , 1997, Journal of Cognitive Neuroscience.

[7]  N. Dronkers A new brain region for coordinating speech articulation , 1996, Nature.

[8]  W. Levelt,et al.  The spatial and temporal signatures of word production components , 2004, Cognition.

[9]  M. Goodale,et al.  The visual brain in action , 1995 .

[10]  J. Bouillaud Recherches cliniques propres à démontrer que la perte de la parole correspond à la lésion des lobules antérieures du cerveau, et à confirmer l’opinion de M. Gall sur le siège de l’organe du language articulé , 1825 .

[11]  N. Geschwind Specializations of the human brain. , 1979, Scientific American.

[12]  N Makris,et al.  Analysis of lesions by MRI in stroke patients with acoustic‐phonetic processing deficits , 1995, Neurology.

[13]  G. Hickok,et al.  AuditoryMotor Interaction Revealed by fMRI: Speech, Music, and Working Memory in Area Spt , 2003, Journal of Cognitive Neuroscience.

[14]  K. Amunts,et al.  Broca's region subserves imagery of motion: A combined cytoarchitectonic and fMRI study , 2000, Human brain mapping.

[15]  A. Friederici Towards a neural basis of auditory sentence processing , 2002, Trends in Cognitive Sciences.

[16]  A. Anwander,et al.  Connectivity-Based Parcellation of Broca's Area. , 2006, Cerebral cortex.

[17]  Matthew H. Davis,et al.  Hearing speech sounds: Top-down influences on the interface between audition and speech perception , 2007, Hearing Research.

[18]  A. Benton,et al.  On Aphasia , 1874, British medical journal.

[19]  A. Nobre,et al.  The anatomy and time course of semantic priming investigated by fMRI and ERPs , 2003, Neuropsychologia.

[20]  G. McCarthy,et al.  Language-related field potentials in the anterior-medial temporal lobe: I. Intracranial distribution and neural generators , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  A. Liberman,et al.  The motor theory of speech perception revised , 1985, Cognition.

[22]  K. Patterson,et al.  A horse of a different colour: Do patients with semantic dementia recognise different versions of the same object as the same? , 2006, Neuropsychologia.

[23]  G. McCarthy,et al.  Language-related field potentials in the anterior-medial temporal lobe: II. Effects of word type and semantic priming , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  K. Amunts,et al.  Broca's region , 2006 .

[25]  N. Geschwind The Varieties of Naming Errors , 1967 .

[26]  S. Bookheimer Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. , 2002, Annual review of neuroscience.

[27]  R. Wise,et al.  Temporal lobe regions engaged during normal speech comprehension. , 2003, Brain : a journal of neurology.

[28]  Cathy J. Price,et al.  7 – Functional Imaging Studies of Aphasia , 2000 .

[29]  Julie A Fiez,et al.  Functional dissociations within the inferior parietal cortex in verbal working memory , 2004, NeuroImage.

[30]  Colin M. Brown,et al.  The neurocognition of language , 2000 .

[31]  Refractor Vision , 2000, The Lancet.

[32]  D. V. von Cramon,et al.  Interval and ordinal properties of sequences are associated with distinct premotor areas. , 2001, Cerebral cortex.

[33]  D. Poeppel,et al.  Towards a functional neuroanatomy of speech perception , 2000, Trends in Cognitive Sciences.

[34]  Martha W. Burton,et al.  The role of inferior frontal cortex in phonological processing , 2001, Cogn. Sci..

[35]  J. M. Anderson,et al.  Conduction Aphasia and the Arcuate Fasciculus: A Reexamination of the Wernicke–Geschwind Model , 1999, Brain and Language.

[36]  D. Poeppel,et al.  Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language , 2004, Cognition.

[37]  A. Friederici,et al.  Musical syntax is processed in Broca's area: an MEG study , 2001, Nature Neuroscience.

[38]  P. Broca Perte de la parole, ramouissement chronique et destruction partielle du lobe antérieur gauche du cerveau , 1861 .

[39]  C. Wernicke Der aphasische Symptomencomplex: Eine psychologische Studie auf anatomischer Basis , 1874 .

[40]  David Poeppel,et al.  Mapping syntax using imaging: problems and prospects for the study of neurolinguistic computation , 2006 .

[41]  John Hart,et al.  Delineation of single‐word semantic comprehension deficits in aphasia, with anatomical correlation , 1990, Annals of neurology.

[42]  C. Büchel,et al.  Event-Related fMRI Reveals Cortical Sites Involved in Contextual Sentence Integration , 2002, NeuroImage.

[43]  Murray Grossman Neurolinguistics and linguistic aphasiology: An introduction. By David Caplan Cambridge, Cambridge University Press, 1987 498 pp, illustrated, $49.50 , 1988 .

[44]  S. Gerhand,et al.  THE NEUROCOGNITION OF LANGUAGE. , 2000 .

[45]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[46]  R. Wise,et al.  Sounds do-able: auditory–motor transformations and the posterior temporal plane , 2005, Trends in Neurosciences.

[47]  G. Thierry,et al.  Renewal of the neurophysiology of language: functional neuroimaging. , 2005, Physiological reviews.

[48]  Cristina Burani,et al.  Functional Anatomy of Derivational Morphology , 2006, Cortex.

[49]  D. Poeppel,et al.  The cortical organization of speech processing , 2007, Nature Reviews Neuroscience.

[50]  Leslie G. Ungerleider,et al.  Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys , 1982, Behavioural Brain Research.