Harnessing the sol-gel process for the assembly of non-silicate mesostructured oxide materials.

Mesostructured non-silicate oxides, with well-defined organization on the 2-50 nm size scale, may play a pivotal role in advancing vital disciplines such as catalysis, energy conversion, and biotechnology. Herein, we present selected methodologies for utilizing the sol-gel process, in conjunction with organic-directed assembly, to synthesize a variety of mesostructured oxides. The nature of the inorganic precursor is critical for this process. We discuss the development of general routes for yielding stable, nanoscopic, hydrophilic, inorganic precursors compatible with organic co-assembly. In particular, we highlight the use and characterization of organic-acid-modified transition metal oxide sol-gel precursors that allow for the synthesis and processing of designer mesostructured oxides such as titania hybrids for optical applications and porous multicomponent metal oxides useful for catalysis.

[1]  G. Stucky,et al.  Nanoparticle Assembly of Ordered Multicomponent Mesostructured Metal Oxides via a Versatile Sol−Gel Process , 2006 .

[2]  Peter K. Stoimenov,et al.  Host-guest composites for induced hemostasis and therapeutic healing in traumatic injuries , 2006, Journal of Thrombosis and Thrombolysis.

[3]  Eric C. Carnes,et al.  Cell-Directed Assembly of Lipid-Silica Nanostructures Providing Extended Cell Viability , 2006, Science.

[4]  M. Antonietti,et al.  Generation of Self‐Assembled 3D Mesostructured SnO2 Thin Films with Highly Crystalline Frameworks , 2006 .

[5]  G. Stucky,et al.  Oxide hemostatic activity. , 2006, Journal of the American Chemical Society.

[6]  U. Schubert Chemical modification of titanium alkoxides for sol–gel processing , 2005 .

[7]  Ladislav Kavan,et al.  Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells. , 2005, Nano letters.

[8]  M. Hartmann Ordered Mesoporous Materials for Bioadsorption and Biocatalysis , 2005 .

[9]  G. Stucky,et al.  3-D Molecular Assembly of Function in Titania-Based Composite Material Systems , 2005 .

[10]  G. Stucky,et al.  Structural analysis of hybrid titania-based mesostructured composites. , 2005, Journal of the American Chemical Society.

[11]  Akira Taguchi,et al.  Ordered mesoporous materials in catalysis , 2005 .

[12]  P. Albouy,et al.  Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides , 2004, Nature materials.

[13]  G. Stucky,et al.  Dye-activated hybrid organic/inorganic mesostructured titania waveguides. , 2004, Journal of the American Chemical Society.

[14]  Sung Yeun Choi,et al.  Thermally Stable Two‐Dimensional Hexagonal Mesoporous Nanocrystalline Anatase, Meso‐nc‐TiO2: Bulk and Crack‐Free Thin Film Morphologies , 2004 .

[15]  Galo J. A. A. Soler-Illia,et al.  Fundamentals of Mesostructuring Through Evaporation‐Induced Self‐Assembly , 2004 .

[16]  Michael D. McGehee,et al.  Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania , 2003 .

[17]  C Jeffrey Brinker,et al.  Peering into the self-assembly of surfactant templated thin-film silica mesophases. , 2003, Journal of the American Chemical Society.

[18]  David Grosso,et al.  Controlled formation of highly organized mesoporous titania thin films: from mesostructured hybrids to mesoporous nanoanatase TiO2. , 2003, Journal of the American Chemical Society.

[19]  D. Zhao,et al.  Self-adjusted synthesis of ordered stable mesoporous minerals by acid–base pairs , 2003, Nature materials.

[20]  Bénédicte Lebeau,et al.  Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. , 2002, Chemical reviews.

[21]  R. Hayward,et al.  General Predictive Syntheses of Cubic, Hexagonal, and Lamellar Silica and Titania Mesostructured Thin Films§ , 2002 .

[22]  G. Stucky,et al.  Mesoporous and Mesostructured Materials for Optical Applications , 2001 .

[23]  Stucky,et al.  Mirrorless lasing from mesostructured waveguides patterned by soft lithography , 2000, Science.

[24]  Bradley F. Chmelka,et al.  Block Copolymer Templating Syntheses of Mesoporous Metal Oxides with Large Ordering Lengths and Semicrystalline Framework , 1999 .

[25]  Yunfeng Lu,et al.  Evaporation-Induced Self-Assembly: Nanostructures Made Easy** , 1999 .

[26]  Bradley F. Chmelka,et al.  Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks , 1998, Nature.

[27]  Fredrickson,et al.  Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores , 1998, Science.

[28]  T. Pinnavaia,et al.  Mesoporous Alumina Molecular Sieves , 1996 .

[29]  Jackie Y. Ying,et al.  Synthesis of a Stable Hexagonally Packed Mesoporous Niobium Oxide Molecular Sieve Through a Novel Ligand‐Assisted Templating Mechanism , 1996 .

[30]  J. Ying,et al.  Synthesis of Hexagonally Packed Mesoporous TiO2 by a Modified Sol–Gel Method , 1995 .

[31]  Q. Huo,et al.  Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays , 1994 .

[32]  Pierre M. Petroff,et al.  Generalized synthesis of periodic surfactant/inorganic composite materials , 1994, Nature.

[33]  J. S. Beck,et al.  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism , 1992, Nature.

[34]  Glen B. Deacon,et al.  Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination , 1980 .

[35]  R. Iler The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica , 1979 .

[36]  M. Carreon,et al.  Ordered Meso- and Macroporous Binary and Mixed Metal Oxides , 2005 .

[37]  A. Hagfeldt,et al.  Molecular photovoltaics. , 2000, Accounts of chemical research.

[38]  S. Tsuruya,et al.  Roles of alkali-metal added to Cu-NaZSM-5 catalysts in the oxidation of benzyl alcohol , 1996 .

[39]  K. Kuroda,et al.  The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials. , 1990 .

[40]  C. Sanchez,et al.  Hydrolysis of titanium alkoxides: modification of the molecular precursor by acetic acid , 1987 .

[41]  K. Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds , 1978 .