Implementation of the ADMM to Parabolic Optimal Control Problems with Control Constraints and Beyond

Parabolic optimal control problems with control constraints are generally challenging, from either theoretical analysis or algorithmic design perspectives. Conceptually, the well-known alternating direction method of multipliers (ADMM) can be directly applied to such a problem. An attractive advantage of this direct ADMM application is that the control constraint can be untied from the parabolic PDE constraint; these two inherently different constraints thus can be treated individually in iterations. At each iteration of the ADMM, the main computation is for solving an unconstrained parabolic optimal control problem. Because of its high dimensionality after discretization, the unconstrained parabolic optimal control problem at each iteration can be solved only inexactly by implementing certain numerical scheme internally and thus a two-layer nested iterative scheme is required. It then becomes important to find an easily implementable and efficient inexactness criterion to execute the internal iterations, and to prove the overall convergence rigorously for the resulting two-layer nested iterative scheme. To implement the ADMM efficiently, we propose an inexactness criterion that is independent of the mesh size of the involved discretization, and it can be executed automatically with no need to set empirically perceived constant accuracy a prior. The inexactness criterion turns out to allow us to solve the resulting unconstrained optimal control problems to medium or even low accuracy and thus saves computation significantly, yet convergence of the overall two-layer nested iterative scheme can be still guaranteed rigorously. Efficiency of this ADMM implementation is promisingly validated by preliminary numerical results. Our methodology can also be extended to a range of optimal control problems constrained by other linear PDEs such as elliptic equations and hyperbolic equations.

[1]  Roland Glowinski,et al.  On Alternating Direction Methods of Multipliers: A Historical Perspective , 2014, Modeling, Simulation and Optimization for Science and Technology.

[2]  Hedy Attouch,et al.  Augmented Lagrangian and Proximal Alternating Direction Methods of Multipliers in Hilbert spaces . Applications to Games , PDE ’ s and Control , 2019 .

[3]  Stefan Ulbrich,et al.  Preconditioners Based on “Parareal” Time-Domain Decomposition for Time-Dependent PDE-Constrained Optimization , 2015 .

[4]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[5]  Jacek Gondzio,et al.  Fast interior point solution of quadratic programming problems arising from PDE-constrained optimization , 2017, Numerische Mathematik.

[6]  Eleanor McDonald All-at-once solution of time-dependent PDE problems , 2016 .

[7]  Karl Kunisch,et al.  Semismooth Newton Methods for Optimal Control of the Wave Equation with Control Constraints , 2011, SIAM J. Control. Optim..

[8]  M. Hestenes Multiplier and gradient methods , 1969 .

[9]  Xiangfeng Wang,et al.  Implementing the Alternating Direction Method of Multipliers for Big Datasets: A Case Study of Least Absolute Shrinkage and Selection Operator , 2018, SIAM J. Sci. Comput..

[10]  R. Glowinski Lectures on Numerical Methods for Non-Linear Variational Problems , 1981 .

[11]  Bingsheng He,et al.  On non-ergodic convergence rate of Douglas–Rachford alternating direction method of multipliers , 2014, Numerische Mathematik.

[12]  M. J. D. Powell,et al.  A method for nonlinear constraints in minimization problems , 1969 .

[13]  Jun Liu,et al.  Parameter-robust preconditioning for the optimal control of the wave equation , 2019, Numerical Algorithms.

[14]  Bingsheng He,et al.  On the O(1/n) Convergence Rate of the Douglas-Rachford Alternating Direction Method , 2012, SIAM J. Numer. Anal..

[15]  Stefan Volkwein,et al.  Mesh-independence and preconditioning for solving parabolic control problems with mixed control-state constraints. , 2009 .

[16]  Martin J. Gander,et al.  Schwarz Methods for the Time-Parallel Solution of Parabolic Control Problems , 2016 .

[17]  Matthias Heinkenschloss,et al.  A time-domain decomposition iterative method for the solution of distributed linear quadratic optimal control problems , 2005 .

[18]  X.-M. YUAN,et al.  The improvement with relative errors of he et al.'s inexact alternating direction method for monotone variational inequalities , 2005, Math. Comput. Model..

[19]  R. Glowinski,et al.  Exact and approximate controllability for distributed parameter systems , 1994, Acta Numerica.

[20]  Kristian Bredies,et al.  Preconditioned Douglas-Rachford Splitting Methods for Convex-concave Saddle-point Problems , 2015, SIAM J. Numer. Anal..

[21]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[22]  Boris Vexler,et al.  A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems , 2019, Constrained Optimization and Optimal Control for Partial Differential Equations.

[23]  S. Ulbrich Generalized SQP-Methods with ''Parareal'' Time-Domain Decomposition for Time-dependent PDE-constrained Optimization , 2007 .

[24]  Martin Stoll One-shot solution of a time-dependent time-periodic PDE-constrained optimization problem , 2014 .

[25]  Martin Stoll,et al.  Regularization-Robust Preconditioners for Time-Dependent PDE-Constrained Optimization Problems , 2012, SIAM J. Matrix Anal. Appl..

[26]  Roland Glowinski,et al.  An ADMM numerical approach to linear parabolic state constrained optimal control problems , 2020, Numerische Mathematik.

[27]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[28]  Roland Glowinski,et al.  Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach (Encyclopedia of Mathematics and its Applications) , 2008 .

[29]  Martin Stoll,et al.  Domain decomposition in time for PDE-constrained optimization , 2015, Comput. Phys. Commun..

[30]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[31]  Wang Yao,et al.  Relative-error approximate versions of Douglas–Rachford splitting and special cases of the ADMM , 2018, Math. Program..

[32]  Stefan Ulbrich,et al.  Operator Preconditioning for a Class of Inequality Constrained Optimal Control Problems , 2014, SIAM J. Optim..

[33]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[34]  R. Glowinski Finite element methods for incompressible viscous flow , 2003 .

[35]  R. Glowinski,et al.  A Computational Approach to Controllability Issues for Flow-Related Models. (I): Pointwise Control of the Viscous Burgers Equation , 1996 .

[36]  Arnd Rösch,et al.  Primal-Dual Active Set Strategy for a General Class of Constrained Optimal Control Problems , 2002, SIAM J. Optim..

[37]  Michael K. Ng,et al.  Inexact Alternating Direction Methods for Image Recovery , 2011, SIAM J. Sci. Comput..

[38]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[40]  Boris Vexler,et al.  A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems Part II: Problems with Control Constraints , 2008, SIAM J. Control. Optim..

[41]  Bingsheng He,et al.  A new inexact alternating directions method for monotone variational inequalities , 2002, Math. Program..

[42]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[43]  Alfio Borzì,et al.  Multigrid methods for parabolic distributed optimal control problems , 2003 .

[44]  Valeria Simoncini,et al.  Preconditioning of Active-Set Newton Methods for PDE-constrained Optimal Control Problems , 2014, SIAM J. Sci. Comput..

[45]  K. Kunisch,et al.  Primal-Dual Strategy for Constrained Optimal Control Problems , 1999 .

[46]  Jiye Yang,et al.  Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations , 2014, J. Comput. Phys..

[47]  Michael Hinze,et al.  Hamburger Beiträge zur Angewandten Mathematik The semi-smooth Newton method for variationally discretized control constrained elliptic optimal control problems ; implementation , convergence and globalization , 2022 .

[48]  Andrew J. Wathen,et al.  A new approximation of the Schur complement in preconditioners for PDE‐constrained optimization , 2012, Numer. Linear Algebra Appl..

[49]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[50]  Roland Glowinski,et al.  Variational methods for the numerical solution of nonlinear elliptic problems , 2015, CBMS-NSF regional conference series in applied mathematics.

[51]  M. Fortin,et al.  Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .

[52]  Michael Ulbrich,et al.  Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces , 2011, MOS-SIAM Series on Optimization.

[53]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[54]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[55]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .

[56]  J. L. Nazareth,et al.  Cholesky-based Methods for Sparse Least Squares : The Benefits of Regularization ∗ , 1996 .

[57]  Bo Yu,et al.  A two‐phase strategy for control constrained elliptic optimal control problems , 2016, Numer. Linear Algebra Appl..

[58]  Christian E. Schaerer,et al.  Analysis of Block Parareal Preconditioners for Parabolic Optimal Control Problems , 2010, SIAM J. Sci. Comput..

[59]  Alfio Borzì,et al.  Proximal schemes for parabolic optimal control problems with sparsity promoting cost functionals , 2017, Int. J. Control.

[60]  Alfio Borzì,et al.  Multigrid second-order accurate solution of parabolic control-constrained problems , 2012, Comput. Optim. Appl..

[61]  Buyang Li,et al.  A Fast and Stable Preconditioned Iterative Method for Optimal Control Problem of Wave Equations , 2015, SIAM J. Sci. Comput..

[62]  Martin Stoll,et al.  Preconditioning for partial differential equation constrained optimization with control constraints , 2011, Numer. Linear Algebra Appl..