Localizing the first position of a moving stimulus: The Fröhlich effect and an attention-shifting explanation

When subjects are asked to determine where a fast-moving stimulus enters a window, they typically do not localize the stimulus at the edge, but at some later position within that window (Fröhlich effect). We report five experiments that explored this illusion. An attentional account is tested, assuming that the entrance of the stimulus in the window initiates a focus shift toward it. While this shift is under way, the stimulus moves into the window. Because the first phenomenal (i.e., explicitly reportable) representation of the stimulus will not be available before the end of the focus shift, the stimulus is perceived at some later position. In Experiment 1, we established the Fröhlich effect and showed that its size depends on stimulus parameters such as movement speed and movement direction. In Experiments 2 and 3, we examined the influence of eye movements and tested whether the effect changed when the stimuli were presented within a structural background or when they started from different eccentricities. In Experiments 4 and 5, specific predictions from the attentional model were tested: In Experiment 4 we showed that the processing of the moving stimulus benefits from a preceding peripheral cue indicating the starting position of the subsequent movement, which induces a preliminary focus shift to the position where the moving stimulus would appear. As a consequence the Fröhlich effect was reduced. Using a detection task in Experiment 5, we showed that feature information about the moving stimulus is lost when it falls into the critical interval of the attention shift. In conclusion, the present attentional account shows that selection mechanisms are not exclusively space based; rather, they can establish a spatial representation that is also used for perceptual judgment—that is, selection mechanisms can bespace establishing as well.

[1]  S. Tipper,et al.  Object-based and environment-based inhibition of return of visual attention. , 1994 .

[2]  Jochen Müsseler,et al.  Aufmerksamkeitsverlagerungen und Relativität. Ein experimenteller Beitrag zur Raum-Zeit-Wahrnehmung anhand eines Kontraktionsphänomens (Tandem-Effekt) [Attention shifts and relativity. An experimental study to the perception of space and time with a contraction phenomenon (tandem effect)] , 1987 .

[3]  P. Rabbitt,et al.  Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption , 1989 .

[4]  J. Jonides Voluntary versus automatic control over the mind's eye's movement , 1981 .

[5]  R. Remington,et al.  Moving attention: Evidence for time-invariant shifts of visual selective attention , 1984, Perception & psychophysics.

[6]  H. Collewijn,et al.  Differences in accuracy of human saccades between stationary and jumping targets , 1989, Vision Research.

[7]  Odmar Neumann,et al.  Visuelles Fokussieren: Das Wetterwart-Modell und einige seiner Anwendungen , 1990 .

[8]  G. Aschersleben,et al.  Dissociations in the timing of stationary and moving stimuli , 1999 .

[9]  W. Prinz,et al.  Relationships Between Perception and Action: Current Approaches , 1990 .

[10]  Edgar Rubin Kritisches und Experimentelles zur „Empfindungszeit“ Fröhlichs , 1930 .

[11]  G. Rizzolatti,et al.  Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention , 1987, Neuropsychologia.

[12]  A H van der Heijden,et al.  Enhancing Single-Item Recognition Accuracy by Cueing Spatial Locations in Vision , 1985, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[13]  P. McLeod,et al.  Filtering by movement in visual search. , 1991, Journal of experimental psychology. Human perception and performance.

[14]  D Finlay,et al.  Motion Perception in the Peripheral Visual Field , 1982, Perception.

[15]  S. Mateeff,et al.  Perceptual latencies are shorter for motion towards the fovea than for motion away , 1988, Vision Research.

[16]  J. Müsseler Commentary on Stoffer and Umilta: Focus-related or fovea-related spatial codings? , 1997 .

[17]  J. Müsseler Position-dependent and position-independent attention shifts: Evidence against the spotlight and premotor assumption of visual focussing , 1994, Psychological research.

[18]  J. O'Regan,et al.  Retinal versus extraretinal influences in flash localization during saccadic eye movements in the presence of a visible background , 1984, Perception & psychophysics.

[19]  W. Prinz,et al.  Theoretical issues in stimulus-response compatibility , 1997 .

[20]  J. Theeuwes Exogenous and endogenous control of attention: The effect of visual onsets and offsets , 1991, Perception & psychophysics.

[21]  L. Stelmach,et al.  Attentional modulation of visual processes in motion perception. , 1994 .

[22]  D C Van Essen,et al.  Shifter circuits: a computational strategy for dynamic aspects of visual processing. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[23]  T. Radil,et al.  Selective directional sensitivity in visual motion perception , 1991, Vision Research.

[24]  M. Posner,et al.  Orienting of Attention* , 1980, The Quarterly journal of experimental psychology.

[25]  J. Freyd,et al.  A velocity effect for representational momentum , 1985 .

[26]  T. Bachmann The process of perceptual retouch: Nonspecific afferent activation dynamics in explaining visual masking , 1984, Perception & psychophysics.

[27]  H. Hecht Retinal, attentional, and causal aspects of illusory-motion directionality , 1995, Psychological research.

[28]  H J Müller,et al.  Movement versus focusing of visual attention , 1989, Perception & psychophysics.

[29]  Friedrich W. Fröhlich,et al.  Die Empfindungszeit : ein Beitrag zur Lehre von der Zeit-, Raum- und Bewegungsempfindung , 1929 .

[30]  N. Drasdo The neural representation of visual space , 1977, Nature.

[31]  O. Hikosaka,et al.  Voluntary and Stimulus-Induced Attention Detected as Motion Sensation , 1993, Perception.

[32]  Heiner Deubel,et al.  Relative mislocalization of briefly presented stimuli in the retinal periphery , 1999, Perception & psychophysics.

[33]  S. Tipper,et al.  Selection of moving and static objects for the control of spatially directed action. , 1990, Journal of experimental psychology. Human perception and performance.

[34]  M J Morgan,et al.  Motion deblurring in human vision , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[35]  D. Willey Measuring reaction time , 1985 .

[36]  Talis Bachmann,et al.  Visibility of Brief Images: The Dual-Process Approach , 1997, Consciousness and Cognition.

[37]  A. H. C. Heijden,et al.  Location errors in partial-report bar-probe experiments: In search of the origin of cue-alignment problems , 1997, Memory & cognition.

[38]  P. McLeod,et al.  Are direction and speed coded independently by the visual system? Evidence from visual search. , 1992, Spatial vision.

[39]  G. Baylis,et al.  Movement and visual attention: the spotlight metaphor breaks down. , 1989, Journal of experimental psychology. Human perception and performance.

[40]  S. Tipper,et al.  Object-based and environment-based inhibition of return of visual attention. , 1994, Journal of experimental psychology. Human perception and performance.

[41]  John Ross,et al.  Visual processing of motion , 1986, Trends in Neurosciences.

[42]  J. J. Koenderink,et al.  Inhomogeneity and anisotropies for motion detection in the monocular visual field of human observers , 1993, Vision Research.

[43]  P. McLeod,et al.  Motion coherence and conjunction search: Implications for guided search theory , 1992, Perception & psychophysics.

[44]  Friedrich W. Fröhlich,et al.  Über die Messung der Empfindungszeit , 1930 .

[45]  W. Metzger,et al.  Versuch einer gemeinsamen Theorie der Phänomene Fröhlichs und Hazelhoffs und Kritik ihrer Verfahren zur Messung der Empfindungszeit , 1932 .

[46]  A. Fuchs,et al.  Further properties of the human saccadic system: eye movements and correction saccades with and without visual fixation points. , 1969, Vision research.

[47]  Journal of the Optical Society of America , 1950, Nature.

[48]  Skavenski Aa,et al.  Eye movement and visual localization of objects in space. , 1990 .

[49]  Allen Allport,et al.  Visual attention , 1989 .

[50]  S. Yantis,et al.  Object continuity in apparent motion and attention. , 1994, Canadian journal of experimental psychology = Revue canadienne de psychologie experimentale.

[51]  M. Posner,et al.  Components of visual orienting , 1984 .

[52]  A. Johnston,et al.  Lower thresholds of motion for gratings as a function of eccentricity and contrast , 1985, Vision Research.

[53]  O. Neumann Visual Attention and Action , 1990 .

[54]  B E Butler,et al.  On the nature of perceptual limits in vision , 1986, Psychological research.

[55]  H. Collewijn,et al.  Binocular co‐ordination of human horizontal saccadic eye movements. , 1988, The Journal of physiology.

[56]  O. Hikosaka,et al.  Focal visual attention produces illusory temporal order and motion sensation , 1993, Vision Research.

[57]  Stanley A. Klein,et al.  Extrapolation or attention shift? , 1995, Nature.

[58]  C. Eriksen,et al.  Movement of attentional focus across the visual field: A critical look at the evidence , 1987, Perception & psychophysics.

[59]  Carlo Umiltà,et al.  Differential effects of central and peripheral cues on the reorienting of spatial attention. , 1991 .

[60]  R A Finke,et al.  Implied velocity and acceleration induce transformations of visual memory. , 1986, Journal of experimental psychology. General.

[61]  G. Chastain Effects of abruptly appearing clutter on a peripherally precued covert attention shift. , 1991, The Journal of general psychology.

[62]  A. H. C. van der Heijden,et al.  Selective Attention in Vision , 1991 .

[63]  H. Huynh,et al.  Performance of traditional f tests in repeated measures designs under covariance heterogeneity , 1980 .

[64]  W. Wolf,et al.  Corrective saccades: Effect of shifting the saccade goal , 1982, Vision Research.

[65]  D. B. Henson,et al.  Investigation into corrective saccadic eye movements for refixation amplitudes of 10 degrees and below , 1979, Vision Research.

[66]  D Rose,et al.  Stimulus Mislocalization Depends on Spatial Frequency , 1992, Perception.

[67]  Manfred Fahle,et al.  Perception of oppositely moving verniers and spatio-temporal interpolation , 1995, Vision Research.

[68]  J Miller,et al.  The control of attention by abrupt visual onsets and offsets , 1989, Perception & psychophysics.

[69]  J. Findlay,et al.  The effect of visual attention on peripheral discrimination thresholds in single and multiple element displays. , 1988, Acta psychologica.

[70]  Don G. Bouwhuis,et al.  Control of language processes , 1984 .

[71]  J. Müsseler,et al.  Apparent distance reduction with moving stimuli (Tandem Effect): Evidence for an attention-shifting model , 1992, Psychological research.

[72]  H. J. Muller,et al.  Spatial and temporal effects of spatial attention on human saccadic eye movements , 1992, Vision Research.

[73]  D A Allport,et al.  Perceptual integration of identity, location and colour , 1986, Psychological research.

[74]  G. Sperling,et al.  Episodic theory of the dynamics of spatial attention. , 1995 .

[75]  Talis Bachmann Psychophysiology of Visual Masking: The Fine Structure of Conscious Experience , 1994 .

[76]  G. Shulman,et al.  Moving attention through visual space. , 1979, Journal of experimental psychology. Human perception and performance.

[77]  Wolfgang Prinz,et al.  Psychophysical explorations of mental structures , 1990 .

[78]  H. Egeth,et al.  Further evidence for a time-independent shift of the focus of attention , 1991, Perception & psychophysics.

[79]  Y. Tsal Movements of attention across the visual field. , 1983, Journal of experimental psychology. Human perception and performance.

[80]  A. Treisman,et al.  Attention and apparent motion. , 1994, Spatial vision.

[81]  J. Müsseler,et al.  'Judgement' vs. 'response': A general problem and some experimental illustrations , 1990 .