Science and technology of amorphous silicon alloy photovoltaics

Significant advances have been made in our understanding of amorphous silicon alloy materials and solar cells that have resulted in the achievement of high cell and module efficiency. The R&D results have also been translated to production, and several manufacturers have expanded their production capacity, raising the worldwide annual capacity exceeding 25 MW. In this paper, we shall review the progress in the science and technology of amorphous silicon alloy photovoltaics and discuss the future directions.

[1]  H. Forest The Solarex approach to expanding the PV business , 1997 .

[2]  W. V. Sark,et al.  Ion bombardment in silane VHF deposition plasmas , 1997 .

[3]  Yuanmin Li Amorphous Silicon-Carbon Alloys for Solar Cells , 1993 .

[4]  Subhendu Guha,et al.  Materials aspects of amorphous silicon solar cells , 1997 .

[5]  Kenji Yamamoto,et al.  Thin film poly-Si solar cell, with "star structure" on glass substrate fabricated at low temperature , 1997, Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997.

[6]  L. Russell,et al.  An Exploratory Survey of p -Layers for a-Si:H Solar Cells , 1994 .

[7]  S. Ovshinsky,et al.  Fluorinated amorphous silicon-germanium alloys deposited from disilane-germane mixture , 1987 .

[8]  S. Guha,et al.  Optimization of high efficiency amorphous silicon alloy based triple-junction modules , 1999 .

[9]  Stanford R. Ovshinsky,et al.  Band‐gap profiling for improving the efficiency of amorphous silicon alloy solar cells , 1989 .

[10]  Subhendu Guha,et al.  Enhancement of open circuit voltage in high efficiency amorphous silicon alloy solar cells , 1986 .

[11]  Subhendu Guha,et al.  Characteristics of hydrogenated amorphous silicon alloy solar cells on a Lambertian back reflector , 1994 .

[12]  J. Meier,et al.  Potential of VHF-Plasmas for Low-Cost Production of a-Si:H Solar Cells , 1997 .

[13]  Nicolas Wyrsch,et al.  Recent progress on microcrystalline solar cells , 1997, Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997.

[14]  M. Heintze Versatile High Rate Plasma Deposition and Processing with very high Frequency Excitation , 1997 .

[15]  S. Guha,et al.  High deposition rate amorphous silicon‐based multijunction solar cell , 1995 .

[16]  A Study of a-Si:H/a-SiGe:H Tandem Solar Cells and Modules , 1994 .

[17]  INFLUENCE OF EXCITATION FREQUENCY, TEMPERATURE, AND HYDROGEN DILUTION ON THE STABILITY OF PLASMA ENHANCED CHEMICAL VAPOR DEPOSITED A-SI:H , 1998 .

[18]  S. Guha,et al.  Structural, defect, and device behavior of hydrogenated amorphous Si near and above the onset of microcrystallinity , 1999 .

[19]  S. Guha,et al.  Triple-junction amorphous silicon alloy PV manufacturing plant of 5 MW annual capacity , 1997, Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997.

[20]  H. Fritzsche,et al.  Search for Explaining the Staebler-Wronski Effect , 1997 .

[21]  S. M. Pietruszko,et al.  On light‐induced effect in amorphous hydrogenated silicon , 1981 .

[22]  S. Guha,et al.  Analysis of Plasma Properties and Deposition of Amorphous Silicon Alloy Solar Cells Using Very High Frequency Glow Discharge , 1999 .

[23]  S. Guha,et al.  Hydrogen dilution effects on a-Si:H and a-SiGe:H materials properties and solar cell performance , 1996 .

[24]  Stanford R. Ovshinsky,et al.  Effect of hydrogen dilution on the structure of amorphous silicon alloys , 1997 .

[25]  S. Guha,et al.  Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies , 1997 .