Notes on the non-renormalization theorem in superstring theories

[1]  E. D'hoker,et al.  The Geometry of String Perturbation Theory , 1988 .

[2]  R. Iengo,et al.  Two-loop computation of the four-particle amplitude in heterotic string theory , 1988 .

[3]  R. Iengo,et al.  Two-loop vacuum amplitude in four-dimensional heterotic string models , 1988 .

[4]  R. Iengo,et al.  Modular invariance and the two-loop vanishing of the cosmological constant , 1988 .

[5]  A. Morozov,et al.  Statistical sums of strings on hyperelliptic surfaces , 1988 .

[6]  David Montaño Superstrings on hyperelliptic surfaces and the two-loop vanishing of the cosmological constant☆ , 1988 .

[7]  V. G. Knizhnik Analytic fields on Riemann surfaces. II , 1987 .

[8]  A. Perelomov,et al.  Partition functions in superstring theory. The case of genus two , 1987 .

[9]  V. G. Knizhnik Explicit expression for the two-loop measure in the heterotic string theory , 1987 .

[10]  H. Verlinde,et al.  Multiloop calculations in covariant superstring theory , 1987 .

[11]  M. Bershadsky,et al.  Conformal Field Theories with Additional Z(N) Symmetry , 1987 .

[12]  E. Martinec Conformal Field Theory on a (Super)Riemann Surface , 1987 .

[13]  E. Martinec Nonrenormalization theorems and fermionic string finiteness , 1986 .

[14]  S. Shenker,et al.  The Conformal Field Theory of Orbifolds , 1987 .

[15]  A. Zamolodchikov Conformal scalar field on the hyperelliptic curve and critical Ashkin-Teller multipoint correlation functions , 1987 .

[16]  S. Shenker,et al.  Conformal invariance, supersymmetry and string theory , 1986 .