Notes on the non-renormalization theorem in superstring theories
暂无分享,去创建一个
[1] E. D'hoker,et al. The Geometry of String Perturbation Theory , 1988 .
[2] R. Iengo,et al. Two-loop computation of the four-particle amplitude in heterotic string theory , 1988 .
[3] R. Iengo,et al. Two-loop vacuum amplitude in four-dimensional heterotic string models , 1988 .
[4] R. Iengo,et al. Modular invariance and the two-loop vanishing of the cosmological constant , 1988 .
[5] A. Morozov,et al. Statistical sums of strings on hyperelliptic surfaces , 1988 .
[6] David Montaño. Superstrings on hyperelliptic surfaces and the two-loop vanishing of the cosmological constant☆ , 1988 .
[7] V. G. Knizhnik. Analytic fields on Riemann surfaces. II , 1987 .
[8] A. Perelomov,et al. Partition functions in superstring theory. The case of genus two , 1987 .
[9] V. G. Knizhnik. Explicit expression for the two-loop measure in the heterotic string theory , 1987 .
[10] H. Verlinde,et al. Multiloop calculations in covariant superstring theory , 1987 .
[11] M. Bershadsky,et al. Conformal Field Theories with Additional Z(N) Symmetry , 1987 .
[12] E. Martinec. Conformal Field Theory on a (Super)Riemann Surface , 1987 .
[13] E. Martinec. Nonrenormalization theorems and fermionic string finiteness , 1986 .
[14] S. Shenker,et al. The Conformal Field Theory of Orbifolds , 1987 .
[15] A. Zamolodchikov. Conformal scalar field on the hyperelliptic curve and critical Ashkin-Teller multipoint correlation functions , 1987 .
[16] S. Shenker,et al. Conformal invariance, supersymmetry and string theory , 1986 .