Synthesis and engineering porosity of a mixed metal Fe2Ni MIL-88B metal-organic framework.

A new rational approach has been developed for the synthesis of a mixed metal MIL-88B metal-organic framework based on a neutral mixed metal cluster, such as Fe(2)Ni(μ(3)-O). Unlike the conventional negative charged single metal cluster, the use of the neutral mixed metal cluster as nodes in the framework avoids the need of a compensating anion inside the porous MIL-88B system; thus the mixed metal MIL-88B becomes porous. The flexibility of the mixed metal MIL-88B can be controlled by terminal ligands with different steric hindrance. This allows us to reversibly customize the porosity of the MIL-88B structure at three levels of specific surface area as well as the pore volume.

[1]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[2]  T. Do,et al.  A Route to Bimodal Micro-Mesoporous Metal–Organic Frameworks Nanocrystals , 2012 .

[3]  T. Do,et al.  Novel route to size-controlled Fe-MIL-88B-NH2 metal-organic framework nanocrystals. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[4]  C. Riekel,et al.  How linker's modification controls swelling properties of highly flexible iron(III) dicarboxylates MIL-88. , 2011, Journal of the American Chemical Society.

[5]  Cheng Wang,et al.  Isoreticular chiral metal-organic frameworks for asymmetric alkene epoxidation: tuning catalytic activity by controlling framework catenation and varying open channel sizes. , 2010, Journal of the American Chemical Society.

[6]  R. Boese,et al.  Synthesis, X-ray crystal structure and spectroscopic characterization of heterotrinuclear oxo-centered complex [Fe2NiO(CH3CH2COO)6(H2O)3] , 2010 .

[7]  Omar M Yaghi,et al.  Metal insertion in a microporous metal-organic framework lined with 2,2'-bipyridine. , 2010, Journal of the American Chemical Society.

[8]  Seth M. Cohen,et al.  Evaluation of heterogeneous metal-organic framework organocatalysts prepared by postsynthetic modification. , 2010, Inorganic chemistry.

[9]  J. Tarascon,et al.  Synthesis, Structure, Characterization, and Redox Properties of the Porous MIL‐68(Fe) Solid , 2010 .

[10]  A. Corma,et al.  Engineering metal organic frameworks for heterogeneous catalysis. , 2010, Chemical reviews.

[11]  Gérard Férey,et al.  Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. , 2010, Nature materials.

[12]  Umesh Kumar,et al.  Factors dictating the nuclearity/aggregation and acetate coordination modes of lutidine-coordinated zinc(II) acetate complexes. , 2010, Inorganic chemistry.

[13]  Omar M Yaghi,et al.  Isoreticular metalation of metal-organic frameworks. , 2009, Journal of the American Chemical Society.

[14]  Kimoon Kim,et al.  Postsynthetic modification switches an achiral framework to catalytically active homochiral metal-organic porous materials. , 2009, Journal of the American Chemical Society.

[15]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[16]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[17]  C. Serre,et al.  Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. , 2009, Chemical Society reviews.

[18]  Mircea Dincă,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[19]  Michael O'Keeffe,et al.  Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. , 2009, Chemical Society reviews.

[20]  R. Scopelliti,et al.  Mechanism of pyridine-ligand exchanges at the different labile sites of 3d heterometallic and mixed valence mu3-oxo trinuclear clusters. , 2008, Inorganic chemistry.

[21]  A. Matzger,et al.  Selective metal substitution for the preparation of heterobimetallic microporous coordination polymers. , 2008, Inorganic chemistry.

[22]  C. Serre,et al.  High-throughput assisted rationalization of the formation of metal organic frameworks in the Iron(III) aminoterephthalate solvothermal system. , 2008, Inorganic chemistry.

[23]  C. Serre,et al.  Role of Solvent-Host Interactions That Lead to Very Large Swelling of Hybrid Frameworks , 2007, Science.

[24]  Jaheon Kim,et al.  A porous mixed-valent iron MOF exhibiting the acs net: Synthesis, characterization and sorption behavior of Fe3O(F4BDC)3(H2O)3·(DMF)3.5 , 2007 .

[25]  C. Serre,et al.  A new isoreticular class of metal-organic-frameworks with the MIL-88 topology. , 2006, Chemical communications.

[26]  K. Lillerud,et al.  A thermally stable Pt/Y-based metal-organic framework: Exploring the accessibility of the metal centers with spectroscopic methods using H2O, CH3OH, and CH3CN as probes. , 2006, The journal of physical chemistry. B.

[27]  S. Nguyen,et al.  A metal-organic framework material that functions as an enantioselective catalyst for olefin epoxidation. , 2006, Chemical communications.

[28]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[29]  O. Yaghi,et al.  Metal-organic frameworks based on trigonal prismatic building blocks and the new "acs" topology. , 2005, Inorganic chemistry.

[30]  Bin Zhao,et al.  Coordination polymers containing 1D channels as selective luminescent probes. , 2004, Journal of the American Chemical Society.

[31]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[32]  Bin Zhao,et al.  A nanotubular 3D coordination polymer based on a 3d-4f heterometallic assembly. , 2003, Angewandte Chemie.

[33]  Y. J. Kim,et al.  Analysis of problematic complexing behavior of ferric chloride with N,N-dimethylformamide using combined techniques of FT-IR, XPS, and TGA/DTG. , 2002, Inorganic chemistry.

[34]  M. A. Hasan,et al.  In situ FTIR spectra of pyridine adsorbed on SiO2-Al2O3, TiO2, ZrO2 and CeO2: general considerations for the identification of acid sites on surfaces of finely divided metal oxides , 2001 .

[35]  W. Hatfield,et al.  Magnetic and spectroscopic properties of some heterotrinuclear basic acetates of chromium(III), iron(III), and divalent metal ions , 1986 .

[36]  K. N. Wong,et al.  The FT-IR spectra of pyridine and pyridine-d5 , 1984 .

[37]  K. Kawazoe,et al.  METHOD FOR THE CALCULATION OF EFFECTIVE PORE SIZE DISTRIBUTION IN MOLECULAR SIEVE CARBON , 1983 .

[38]  R. Weinland,et al.  Über Ferri‐nickel‐ usw. ‐acetate und über ein sehr basisches kristallisiertes Ferriacetat , 1928 .

[39]  K. Lillerud,et al.  Characterization of a New Porous Pt-Containing Metal-Organic Framework Containing Potentially Catalytically Active Sites: Local Electronic Structure at the Metal Centers , 2007 .

[40]  Shoutian Zheng,et al.  Lanthanide-transition-metal sandwich framework comprising {Cu3} cluster pillars and layered networks of {Er36} wheels. , 2005, Angewandte Chemie.

[41]  U. Jayasooriya,et al.  Vibrational spectra of carboxylato complexes—VI. Isotopic substitution in the mixed-metal trinuclear complexes [FeIII2NiIIO(OOCCH3)6L3] , 1987 .

[42]  A. B. Blake,et al.  Heterotrinuclear basic acetates containing chromium(III), iron(III), and a divalent metal: spectroscopic consequences of Metal–Metal interactions , 1982 .

[43]  K. Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds , 1978 .

[44]  R. J. P. Williams,et al.  637. The stability of transition-metal complexes , 1953 .