Nanoparticle/Nanochannels-Based Electrochemical Biosensors

The purpose of this chapter is to provide a general comprehensive overview on the latest trends in the development of nanoparticle/nanochannels-based electrochemical biosensors. Given the importance of nanoparticles, some general considerations about their use in biosensors are given before focusing on nanochannels-based electrochemical biosensing systems. A detailed description of representative and recent works covering the main nanochannel arrays fabrication techniques and their application in electrochemical biosensing systems is also given. The combination of nanochannel array sensing capability with the known advantages of nanoparticles in immunosensing is shown as an ideal approach for the diagnostic of proteins and DNA. As conclusion, the integration of nanochannel arrays with electrochemical transducers (ex. screen-printed electrode) seems to be one of the most important challenges in the development of robust sensing devices that may bring electrochemical/nanochannel-based biosensing technology to the market.

[1]  J. Reiner,et al.  Nanoscopic porous sensors. , 2008, Annual review of analytical chemistry.

[2]  J. Hillier,et al.  A study of the nucleation and growth processes in the synthesis of colloidal gold , 1951 .

[3]  Alfredo de la Escosura-Muñiz,et al.  Immunosensing using nanoparticles , 2010 .

[4]  Alfredo de la Escosura-Muñiz,et al.  Size-dependent direct electrochemical detection of gold nanoparticles: application in magnetoimmunoassays. , 2011, Nanoscale.

[5]  J. Pallarès,et al.  Nanoporous anodic alumina obtained without protective oxide layer by hard anodization , 2012 .

[6]  J. Brugger,et al.  SiN membranes with submicrometer hole arrays patterned by wafer-scale nanosphere lithography , 2011 .

[7]  W. Cai,et al.  Fabrication of large-scale zinc oxide ordered pore arrays with controllable morphology. , 2004, Chemical communications.

[8]  Alfredo de la Escosura-Muñiz,et al.  Nanoparticle based enhancement of electrochemical DNA hybridization signal using nanoporous electrodes. , 2010, Chemical communications.

[9]  Arben Merkoçi,et al.  New materials for electrochemical sensing V: Nanoparticles for DNA labeling , 2005 .

[10]  M. Li,et al.  Fabrication of 1D nanochannels on thermoplastic substrates using microchannel compression , 2013 .

[11]  Arben Merkoçi,et al.  A nanochannel/nanoparticle-based filtering and sensing platform for direct detection of a cancer biomarker in blood. , 2011, Small.

[12]  Josep Ferré-Borrull,et al.  Photoluminescent enzymatic sensor based on nanoporous anodic alumina. , 2012, ACS applied materials & interfaces.

[13]  Alfredo de la Escosura-Muñiz,et al.  Electrochemical analysis with nanoparticle-based biosystems , 2008 .

[14]  Qun Huo,et al.  Gold nanoparticle-enabled biological and chemical detection and analysis. , 2012, Chemical Society reviews.

[16]  M. Morris,et al.  Order quantification of hexagonal periodic arrays fabricated by in situ solvent-assisted nanoimprint lithography of block copolymers , 2014, Nanotechnology.

[17]  C. Ross,et al.  Templated Self‐Assembly of Block Copolymers: Top‐Down Helps Bottom‐Up , 2006 .

[18]  A. Yamaguchi,et al.  Fabrication and Analytical Applications of Hybrid Mesoporous Membranes , 2008, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[19]  Jacob J. Schmidt,et al.  Discrimination of single base substitutions in a DNA strand immobilized in a biological nanopore. , 2009, ACS nano.

[20]  H. Jakobsen,et al.  Electrochemical engineering of hollow nanoarchitectures: pulse/step anodization (Si, Al, Ti) and their applications. , 2014, Chemical Society reviews.

[21]  Anthony P F Turner,et al.  Biosensors: sense and sensibility. , 2013, Chemical Society reviews.

[22]  Geoffrey A. Ozin,et al.  Tin dioxide opals and inverted opals: near-ideal microstructures for gas sensors , 2001 .

[23]  H. Bayley,et al.  Protein Detection by Nanopores Equipped with Aptamers , 2012, Journal of the American Chemical Society.

[24]  D. Branton,et al.  The potential and challenges of nanopore sequencing , 2008, Nature Biotechnology.

[25]  Dusan Losic,et al.  Nanoporous anodic aluminum oxide for chemical sensing and biosensors , 2013 .

[26]  M. Allen,et al.  Fabrication and Characterization of Polymer Hollow Microneedle Array Using UV Lithography Into Micromolds , 2013, Journal of Microelectromechanical Systems.

[27]  Jin Zhai,et al.  Ion current behaviors of mesoporous zeolite-polymer composite nanochannels prepared by water-assisted self-assembly. , 2014, Chemical communications.

[28]  H. Bayley,et al.  Stochastic sensors inspired by biology , 2001, Nature.

[29]  Arben Merkoçi,et al.  Nanoparticles for the development of improved (bio)sensing systems , 2011, Analytical and bioanalytical chemistry.

[30]  Dusan Losic,et al.  Ultrasensitive nanoporous interferometric sensor for label-free detection of gold(III) ions. , 2013, ACS applied materials & interfaces.

[31]  Arben Merkoçi,et al.  Gold nanoparticle-based electrochemical magnetoimmunosensor for rapid detection of anti-hepatitis B virus antibodies in human serum. , 2010, Biosensors & bioelectronics.

[32]  Wen‐Di Li,et al.  Double transfer UV-curing nanoimprint lithography , 2013, Nanotechnology.

[33]  P. Kohl,et al.  Patterning decomposable polynorbornene with electron beam lithography to create nanochannels , 2009 .

[34]  Arben Merkoçi,et al.  Simple monitoring of cancer cells using nanoparticles. , 2012, Nano letters.

[35]  Arjan P Quist,et al.  Recent advances in microcontact printing , 2005, Analytical and bioanalytical chemistry.

[36]  J. Elias,et al.  Ordered networks of ZnO-nanowire hierarchical urchin-like structures for improved dye-sensitized solar cells. , 2012, Physical chemistry chemical physics : PCCP.

[37]  Wai-Yeung Wong,et al.  A Polyferroplatinyne Precursor for the Rapid Fabrication of L10‐FePt‐type Bit Patterned Media by Nanoimprint Lithography , 2012, Advanced materials.

[38]  Z. Siwy,et al.  Nanopore analytics: sensing of single molecules. , 2009, Chemical Society reviews.

[39]  J. Betton,et al.  Unfolding of proteins and long transient conformations detected by single nanopore recording. , 2007, Physical review letters.

[40]  J. T. Rodgers,et al.  Discrimination among individual Watson-Crick base pairs at the termini of single DNA hairpin molecules. , 2003, Nucleic acids research.

[41]  Dusan Losic,et al.  Optically optimized photoluminescent and interferometric biosensors based on nanoporous anodic alumina: a comparison. , 2013, Analytical chemistry.

[42]  Arben Merkoçi,et al.  Rapid identification and quantification of tumor cells using an electrocatalytic method based on gold nanoparticles. , 2009, Analytical chemistry.

[43]  Lei Jiang,et al.  Fabrication of layer-by-layer assembled biomimetic nanochannels for highly sensitive acetylcholine sensing. , 2013, Chemistry.

[44]  A. Walcarius Electrocatalysis, sensors and biosensors in analytical chemistry based on ordered mesoporous and macroporous carbon-modified electrodes , 2012 .

[45]  Aline Debrassi,et al.  Stability of (bio)functionalized porous aluminum oxide. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[46]  D. Branton,et al.  Characterization of individual polynucleotide molecules using a membrane channel. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Arben Merkoçi,et al.  Nanochannels preparation and application in biosensing. , 2012, ACS nano.

[48]  Ching-Hsiang Chen,et al.  Innovative fabrication of a Au nanoparticle-decorated SiO2 mask and its activity on surface-enhanced Raman scattering. , 2014, The Analyst.

[49]  Arben Merkoçi,et al.  Electrochemical detection of proteins using nanoparticles: applications to diagnostics. , 2010, Expert opinion on medical diagnostics.

[50]  F. Valentini,et al.  Nanomaterials and Analytical Chemistry , 2008 .

[51]  R. Bashir,et al.  Nanopore sensors for nucleic acid analysis. , 2011, Nature nanotechnology.

[52]  Arben Merkoçi,et al.  Nanoparticles-based strategies for DNA, protein and cell sensors. , 2010, Biosensors & bioelectronics.

[53]  T. Tennikova,et al.  Monodisperse carboxylated polystyrene particles: synthesis, electrokinetic and adsorptive properties , 2005 .

[54]  Alfredo de la Escosura-Muñiz,et al.  Detection of circulating cancer cells using electrocatalytic gold nanoparticles. , 2012, Small.

[55]  Alfredo de la Escosura-Muñiz,et al.  Label-free voltammetric immunosensor using a nanoporous membrane based platform , 2010 .

[56]  Zhu Likai,et al.  Fabrication of size controllable SU-8 nanochannels using nanoimprint lithography and low-pressure thermal bonding methods , 2014 .

[57]  Joseph Wang,et al.  Wearable Electrochemical Sensors and Biosensors: A Review , 2013 .

[58]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[59]  A. Fuchs,et al.  Status and prospects of UV-Nanoimprint technology , 2006 .

[60]  C. Toh,et al.  Development of a membrane-based electrochemical immunosensor , 2007 .

[61]  N. Billington,et al.  Label-Free, All-Optical Detection, Imaging, and Tracking of a Single Protein , 2014, Nano letters.

[62]  C. Wong,et al.  Isotropic photonic pseudogap in electrodeposited ZnO inverse opal , 2006 .

[63]  Werasak Surareungchai,et al.  Nanochannels for diagnostic of thrombin-related diseases in human blood. , 2013, Biosensors & bioelectronics.

[64]  J. Edel,et al.  New developments in nanopore research—from fundamentals to applications , 2010, Journal of Physics: Condensed Matter.

[65]  Xu Hou,et al.  Biomimetic ionic rectifier systems: Asymmetric modification of single nanochannels by ion sputtering technology , 2011 .

[66]  Sergey M. Bezrukov,et al.  Counting polymers moving through a single ion channel , 1994, Nature.

[67]  N. Afzulpurkar,et al.  Bending and branching of anodic aluminum oxide nanochannels and their applications , 2012 .