Applications of multi-objective evolutionary algorithms in economics and finance: A survey

This paper provides a state-of-the-art survey of applications of multi-objective evolutionary algorithms in economics and finance reported in the specialized literature. A taxonomy of applications within this area is proposed, and a brief review of the most representative research reported to date is then provided. In the final part of the paper, some potential paths for future research within this area are identified.

[2]  Andrea G. B. Tettamanzi,et al.  A genetic approach to portfolio selection , 1993 .

[3]  Shu-Heng Chen Evolutionary Computation in Economics and Finance , 2002 .

[4]  Z. Michalewicz,et al.  Genocop III: a co-evolutionary algorithm for numerical optimization problems with nonlinear constraints , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[5]  E. Ruspini,et al.  Automated qualitative description of measurements , 1999, IMTC/99. Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference (Cat. No.99CH36309).

[6]  Tzu-Wen Kuo,et al.  Evolutionary Computation in Economics and Finance: A Bibliography , 2002 .

[7]  J. C. Bean Genetics and random keys for sequencing amd optimization , 1993 .

[8]  Detlef Seese,et al.  Hybrid multi-objective evolutionary computation of constrained downside risk-return efficient sets for credit portfolios , 2002 .

[9]  K. P. Anagnostopoulos,et al.  A MULTIOBJECTIVE GENETIC ALGORITHM FOR PORTFOLIO SELECTION WITH INTEGER CONSTRAINTS , 2008 .

[10]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[11]  David Kendrick,et al.  GAMS, a user's guide , 1988, SGNM.

[12]  Detlef Seese,et al.  FINANCIAL APPLICATIONS OF MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS: RECENT DEVELOPMENTS AND FUTURE RESEARCH DIRECTIONS , 2004 .

[13]  Nancy Paterson The Library , 1912, Leonardo.

[14]  Peter A. Beling,et al.  Hybrid evolutionary algorithms for a multiobjective financial problem , 1998, SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.98CH36218).

[15]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[16]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[17]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[18]  C. Mariano,et al.  MOAQ an Ant-Q algorithm for multiple objective optimization problems , 1999 .

[19]  Jonathan E. Fieldsend,et al.  Using unconstrained elite archives for multiobjective optimization , 2003, IEEE Trans. Evol. Comput..

[20]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[21]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[22]  James A. Foster,et al.  The efficient set GA for stock portfolios , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[23]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[24]  Piero P. Bonissone,et al.  Multiobjective financial portfolio design: a hybrid evolutionary approach , 2005, 2005 IEEE Congress on Evolutionary Computation.

[25]  José Antonio Lozano,et al.  A multiobjective approach to the portfolio optimization problem , 2005, 2005 IEEE Congress on Evolutionary Computation.

[26]  Detlef Seese,et al.  Modern Heuristics for Finance Problems: A Survey of Selected Methods and Applications , 2004 .

[27]  Detlef Seese,et al.  A hybrid heuristic approach to discrete multi-objective optimization of credit portfolios , 2004, Comput. Stat. Data Anal..

[28]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[29]  Andreas Zell,et al.  Comparing Discrete and Continuous Genotypes on the Constrained Portfolio Selection Problem , 2004, GECCO.

[30]  C. S. Chang,et al.  Differential evolution based tuning of fuzzy automatic train operation for mass rapid transit system , 2000 .

[31]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[32]  Nicholas R. Jennings,et al.  Determining successful negotiation strategies: an evolutionary approach , 1998, Proceedings International Conference on Multi Agent Systems (Cat. No.98EX160).

[33]  Jonathan E. Fieldsend,et al.  Cardinality Constrained Portfolio Optimisation , 2004, IDEAL.

[34]  Amitabha Mukerjee,et al.  Multi–objective Evolutionary Algorithms for the Risk–return Trade–off in Bank Loan Management , 2002 .

[35]  Lei. Peng,et al.  Investment portfolio optimization using genetic algorithm. , 2009 .

[36]  Yazid M. Sharaiha,et al.  Heuristics for cardinality constrained portfolio optimisation , 2000, Comput. Oper. Res..

[37]  Marco Tomassini,et al.  Distributed Genetic Algorithms with an Application to Portfolio Selection Problems , 1995, ICANNGA.

[38]  Kathrin Klamroth,et al.  An MCDM approach to portfolio optimization , 2004, Eur. J. Oper. Res..

[39]  Enrique H. Ruspini,et al.  Qualitative Object Description : Initial Reports of the Exploration of the Frontier , 1999 .

[40]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[41]  Hitoshi Iba,et al.  Genetic programming using a minimum description length principle , 1994 .

[42]  Thomas Stützle,et al.  Stochastic Local Search: Foundations & Applications , 2004 .

[43]  James C. Bean,et al.  Genetic Algorithms and Random Keys for Sequencing and Optimization , 1994, INFORMS J. Comput..

[44]  Filippo Menczer,et al.  An evolutionary multi-objective local selection algorithm for customer targeting , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).