Developmental cost theory predicts thermal environment and vulnerability to global warming

[1]  R. Bryson-Richardson,et al.  Linking life-history theory and metabolic theory explains the offspring size-temperature relationship. , 2019, Ecology letters.

[2]  D. Marshall,et al.  A global synthesis of offspring size variation, its eco‐evolutionary causes and consequences , 2018, Functional Ecology.

[3]  C. R. White,et al.  Colder environments did not select for a faster metabolism during experimental evolution of Drosophila melanogaster , 2017, Evolution; international journal of organic evolution.

[4]  Joseph W. Brown,et al.  rotl: an R package to interact with the Open Tree of Life data , 2016 .

[5]  Shinichi Nakagawa,et al.  Visualizing unbiased and biased unweighted meta‐analyses , 2016, Journal of evolutionary biology.

[6]  J. G. Burleigh,et al.  Synthesis of phylogeny and taxonomy into a comprehensive tree of life , 2014, Proceedings of the National Academy of Sciences.

[7]  F. Goller,et al.  A heterogeneous thermal environment enables remarkable behavioral thermoregulation in Uta stansburiana , 2014, Ecology and evolution.

[8]  R. Shine Manipulative Mothers and Selective Forces: The Effects of Reproduction On Thermoregulation In Reptiles , 2012 .

[9]  Wenyun Zuo,et al.  A general model for effects of temperature on ectotherm ontogenetic growth and development , 2012, Proceedings of the Royal Society B: Biological Sciences.

[10]  J. Hadfield,et al.  General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi‐trait models for continuous and categorical characters , 2010, Journal of evolutionary biology.

[11]  D. Moher,et al.  Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement , 2009, BMJ : British Medical Journal.

[12]  J. Pechenik Larval experience and latent effects--metamorphosis is not a new beginning. , 2006, Integrative and comparative biology.

[13]  E. Kamler Parent–egg–progeny Relationships in Teleost Fishes: An Energetics Perspective , 2005, Reviews in Fish Biology and Fisheries.

[14]  D. Marshall,et al.  The relative energetic costs of the larval period, larval swimming and metamorphosis for the ascidian Diplosoma listerianum , 2005 .

[15]  James H. Brown,et al.  UNM Digital Repository UNM Digital Repository Effects of size and temperature on developmental time Effects of size and temperature on developmental time , 2022 .

[16]  G. Quinn,et al.  Experimental Design and Data Analysis for Biologists , 2002 .

[17]  M. Pagel Inferring the historical patterns of biological evolution , 1999, Nature.

[18]  Douglas M. Bates,et al.  LINEAR AND NONLINEAR MIXED-EFFECTS MODELS , 1998 .

[19]  L. Partridge,et al.  Influence of temperature and activity on the metabolic rate of adult Drosophila melanogaster. , 1997, Comparative biochemistry and physiology. Part A, Physiology.

[20]  E. Kamler Early Life History of Fish , 1991, Fish & Fisheries Series.

[21]  John H. Steele,et al.  A comparison of terrestrial and marine ecological systems , 1985, Nature.

[22]  R. Vance On Reproductive Strategies in Marine Benthic Invertebrates , 1973, The American Naturalist.

[23]  E. Willis,et al.  Respiratory Metabolism during Larval and Pupal Development of the Female Honeybee (Apis mellifica L.) , 1939, Physiological Zoology.

[24]  M. Pinsky,et al.  Greater vulnerability to warming of marine versus terrestrial ectotherms , 2019, Nature.

[25]  C. Franklin,et al.  Physiological plasticity increases resilience of ectothermic animals to climate change , 2015 .

[26]  D. Moher,et al.  Nonalcoholic Fatty Liver Disease and Acute Ischemic Stroke , 2010 .

[27]  R. Seymour,et al.  The energy cost of embryonic development in fishes and amphibians, with emphasis on new data from the Australian lungfish, Neoceratodus forsteri , 2010, Journal of Comparative Physiology B.

[28]  V. Hartenstein,et al.  Drosophila melanogaster , 2005 .