Dimension reduction in functional regression using mixed data canonical correlation analysis

We propose a new dimension reduction method, mixed data canonical correlation (MDCANCOR), for functional regression with a scalar response and a functional predictor. MDCANCOR achieves dimension reduction using the canonical correlation analysis between the functional predictor and a set of B-spline basis functions that represent the transformed response space. And we propose a modified version of BIC to determine the dimensionality of the effective dimension reduction (EDR) space. This criterion is generally applicable to dimension reduction problems in functional regression. Asymptotically, we prove that MDCANCOR consistently estimates the directions when the dimensionality of the EDR space is given, and the modified BIC consistently estimates the dimensionality of the EDR space. Both simulation and real data examples show that the MDCANCOR method performs similarly as the regularized functional sliced inverse regression and better than other existing dimension reduction methods.

[1]  L. Ferré,et al.  Functional sliced inverse regression analysis , 2003 .

[2]  Fang Yao,et al.  Functional Additive Models , 2008 .

[3]  W. Fung,et al.  DIMENSION REDUCTION BASED ON CANONICAL CORRELATION , 2002 .

[4]  Gareth M. James,et al.  Functional Adaptive Model Estimation , 2005 .

[5]  H. Müller,et al.  Functional quadratic regression , 2010 .

[6]  W. González-Manteiga,et al.  Bootstrap in functional linear regression , 2011 .

[7]  J. Ramsay,et al.  Some Tools for Functional Data Analysis , 1991 .

[8]  L. Ferré,et al.  Smoothed Functional Inverse Regression , 2005 .

[9]  H. Müller,et al.  Functional Data Analysis for Sparse Longitudinal Data , 2005 .

[10]  T. Tony Cai,et al.  Prediction in functional linear regression , 2006 .

[11]  L. Ferré,et al.  Multilayer Perceptron with Functional Inputs: an Inverse Regression Approach , 2006, 0705.0211.

[12]  Adela Martínez-Calvo Presmoothing in Functional Linear Regression , 2012 .

[13]  Lixing Zhu,et al.  On Sliced Inverse Regression With High-Dimensional Covariates , 2006 .

[14]  Jianhui Zhou,et al.  Robust dimension reduction based on canonical correlation , 2009, J. Multivar. Anal..

[15]  R. Tibshirani,et al.  Penalized Discriminant Analysis , 1995 .

[16]  Ker-Chau Li Sliced inverse regression for dimension reduction (with discussion) , 1991 .

[17]  M. Yuan,et al.  A Reproducing Kernel Hilbert Space Approach to Functional Linear Regression , 2010, 1211.2607.

[18]  Jin-Ting Zhang,et al.  Statistical inferences for functional data , 2007, 0708.2207.

[19]  Nan Lin,et al.  Functional linear regression after spline transformation , 2012, Comput. Stat. Data Anal..

[20]  Henry W. Altland,et al.  Applied Functional Data Analysis , 2003, Technometrics.

[21]  Amparo Baíllo,et al.  Local linear regression for functional predictor and scalar response , 2009, J. Multivar. Anal..

[22]  H. Zha,et al.  Contour regression: A general approach to dimension reduction , 2005, math/0508277.

[23]  Karine Bertin,et al.  Asymptotic normality of the Nadaraya–Watson estimator for nonstationary functional data and applications to telecommunications , 2009 .

[24]  Anestis Antoniadis,et al.  Dimension reduction in functional regression with applications , 2006, Comput. Stat. Data Anal..

[25]  S. Efroimovich Sequential Nonparametric Estimation of a Density , 1990 .

[26]  H. Cardot,et al.  Estimation in generalized linear models for functional data via penalized likelihood , 2005 .

[27]  Ker-Chau Li,et al.  On almost Linearity of Low Dimensional Projections from High Dimensional Data , 1993 .

[28]  Hans-Georg Müller,et al.  Functional Data Analysis , 2016 .

[29]  B. Silverman,et al.  Canonical correlation analysis when the data are curves. , 1993 .