Genome scale engineering techniques for metabolic engineering.

Metabolic engineering has expanded from a focus on designs requiring a small number of genetic modifications to increasingly complex designs driven by advances in genome-scale engineering technologies. Metabolic engineering has been generally defined by the use of iterative cycles of rational genome modifications, strain analysis and characterization, and a synthesis step that fuels additional hypothesis generation. This cycle mirrors the Design-Build-Test-Learn cycle followed throughout various engineering fields that has recently become a defining aspect of synthetic biology. This review will attempt to summarize recent genome-scale design, build, test, and learn technologies and relate their use to a range of metabolic engineering applications.

[1]  G. Church,et al.  Analysis of optimality in natural and perturbed metabolic networks , 2002 .

[2]  Hyun Uk Kim,et al.  Flux-coupled genes and their use in metabolic flux analysis. , 2013, Biotechnology journal.

[3]  Adam M. Feist,et al.  A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011 , 2011, Molecular systems biology.

[4]  Norman W. Paton,et al.  The SuBliMinaL Toolbox: automating steps in the reconstruction of metabolic networks , 2011, J. Integr. Bioinform..

[5]  R. Sorek,et al.  Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity , 2010, Nature Reviews Genetics.

[6]  William R Cluett,et al.  EMILiO: a fast algorithm for genome-scale strain design. , 2011, Metabolic engineering.

[7]  K. Kidd,et al.  Direct haplotyping of chromosomal segments from multiple heterozygotes via allele-specific PCR amplification. , 1989, Nucleic acids research.

[8]  Adam M. Feist,et al.  Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli , 2013, Molecular systems biology.

[9]  Chunhui Li,et al.  Exploring the diversity of complex metabolic networks , 2005, Bioinform..

[10]  W. Stemmer,et al.  Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. , 1995, Gene.

[11]  S. Fields,et al.  Deep mutational scanning: a new style of protein science , 2014, Nature Methods.

[12]  Feng Zhang,et al.  CRISPR-assisted editing of bacterial genomes , 2013, Nature Biotechnology.

[13]  Ali Navid,et al.  Genome-level transcription data of Yersinia pestis analyzed with a New metabolic constraint-based approach , 2012, BMC Systems Biology.

[14]  Jonathan A. Kelner,et al.  Large-scale identification of genetic design strategies using local search , 2009, Molecular systems biology.

[15]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[16]  Christopher H. Bryant,et al.  Functional genomic hypothesis generation and experimentation by a robot scientist , 2004, Nature.

[17]  Jiangang Yang,et al.  Metabolic engineering of Escherichia coli and in silico comparing of carboxylation pathways for high succinate productivity under aerobic conditions. , 2014, Microbiological research.

[18]  Susmita Datta,et al.  Feature selection and machine learning with mass spectrometry data. , 2010, Methods in molecular biology.

[19]  G. Church,et al.  Lambda Red Recombineering in Escherichia coli Occurs Through a Fully Single-Stranded Intermediate , 2010, Genetics.

[20]  Giuseppe Testa,et al.  DNA cloning by homologous recombination in Escherichia coli , 2000, Nature Biotechnology.

[21]  J Craig Venter,et al.  Chemical synthesis of the mouse mitochondrial genome , 2010, Nature Methods.

[22]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[23]  Sara B. Collins,et al.  Temporal Expression-based Analysis of Metabolism , 2012, PLoS Comput. Biol..

[24]  D. Court,et al.  Recombineering: a homologous recombination-based method of genetic engineering , 2009, Nature Protocols.

[25]  N. Pavletich,et al.  Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A , 1991, Science.

[26]  Jean-Marie Rouillard,et al.  Evolution combined with genomic study elucidates genetic bases of isobutanol tolerance in Escherichia coli , 2011, Microbial cell factories.

[27]  Jun Li,et al.  Targeted genome modification of crop plants using a CRISPR-Cas system , 2013, Nature Biotechnology.

[28]  P. Rouet,et al.  Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Dong In Kim,et al.  Metabolic engineering of Escherichia coli for the production of fumaric acid , 2013, Biotechnology and bioengineering.

[30]  S. Kowalczykowski,et al.  RecBCD Enzyme and the Repair of Double-Stranded DNA Breaks , 2008, Microbiology and Molecular Biology Reviews.

[31]  R. Gill,et al.  Quantifying Impact of Chromosome Copy Number on Recombination in Escherichia coli. , 2015, ACS synthetic biology.

[32]  Ryan T Gill,et al.  SCALEs: multiscale analysis of library enrichment , 2007, Nature Methods.

[33]  Desmond S. Lun,et al.  Interpreting Expression Data with Metabolic Flux Models: Predicting Mycobacterium tuberculosis Mycolic Acid Production , 2009, PLoS Comput. Biol..

[34]  Koji Kawabata,et al.  Complete Chemical Synthesis , Assembly , and Cloning of a Mycoplasma genitalium Genome , 2008 .

[35]  Farren J. Isaacs,et al.  Precise Manipulation of Chromosomes in Vivo Enables Genome-Wide Codon Replacement , 2011, Science.

[36]  Fuzhong Zhang,et al.  Biosensors and their applications in microbial metabolic engineering. , 2011, Trends in microbiology.

[37]  M. Jinek,et al.  Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease , 2014, Nature.

[38]  Jeffrey E. Barrick,et al.  Genomic Analysis of a Key Innovation in an Experimental E. coli Population , 2012, Nature.

[39]  Pablo Carbonell,et al.  Retropath: automated pipeline for embedded metabolic circuits. , 2014, ACS synthetic biology.

[40]  Drew Endy,et al.  Engineering BioBrick vectors from BioBrick parts , 2008, Journal of Biological Engineering.

[41]  Sriram Kosuri,et al.  Causes and Effects of N-Terminal Codon Bias in Bacterial Genes , 2013, Science.

[42]  J. J. Díaz-Mejía,et al.  Network-based function prediction and interactomics: the case for metabolic enzymes. , 2011, Metabolic engineering.

[43]  Bradley P. Coe,et al.  Genome structural variation discovery and genotyping , 2011, Nature Reviews Genetics.

[44]  Y. Jang,et al.  Enhanced Butanol Production Obtained by Reinforcing the Direct Butanol-Forming Route in Clostridium acetobutylicum , 2012, mBio.

[45]  M. Metzker Sequencing technologies — the next generation , 2010, Nature Reviews Genetics.

[46]  C. Peota Novel approach. , 2011, Minnesota medicine.

[47]  Corey D Broeckling,et al.  MET-IDEA: data extraction tool for mass spectrometry-based metabolomics. , 2006, Analytical chemistry.

[48]  Jonathan L. Klassen,et al.  Microbial Strain Prioritization Using Metabolomics Tools for the Discovery of Natural Products , 2012, Analytical chemistry.

[49]  J. Bernhardt,et al.  Global relative and absolute quantitation in microbial proteomics. , 2012, Current opinion in microbiology.

[50]  Rick L Stevens,et al.  iBsu1103: a new genome-scale metabolic model of Bacillus subtilis based on SEED annotations , 2009, Genome Biology.

[51]  Carola Engler,et al.  A One Pot, One Step, Precision Cloning Method with High Throughput Capability , 2008, PloS one.

[52]  Ken E. Whelan,et al.  The Automation of Science , 2009, Science.

[53]  Y. Choi,et al.  Metabolic engineering of Escherichia coli for the production of 1-propanol. , 2012, Metabolic engineering.

[54]  Lucas Pelkmans,et al.  RNAi screening reveals proteasome- and Cullin3-dependent stages in vaccinia virus infection. , 2012, Cell reports.

[55]  Mazhar Adli,et al.  Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease , 2014, Nature Biotechnology.

[56]  Vladimir Larionov,et al.  Selective isolation of genomic loci from complex genomes by transformation-associated recombination cloning in the yeast Saccharomyces cerevisiae , 2008, Nature Protocols.

[57]  Susmita Datta Feature selection and machine learning with mass spectrometry data. , 2013, Methods in molecular biology.

[58]  B. Palsson,et al.  Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. , 2003, Genome research.

[59]  Raul Andino,et al.  Mutational and fitness landscapes of an RNA virus revealed through population sequencing , 2013, Nature.

[60]  Bernhard O. Palsson,et al.  GIM3E: condition-specific models of cellular metabolism developed from metabolomics and expression data , 2013, Bioinform..

[61]  Gunnar Rätsch,et al.  Support Vector Machines and Kernels for Computational Biology , 2008, PLoS Comput. Biol..

[62]  Hidde L Ploegh,et al.  Inhibition of non-homologous end joining increases the efficiency of CRISPR/Cas9-mediated precise [TM: inserted] genome editing , 2015, Nature Biotechnology.

[63]  M. Boutros,et al.  E-CRISP: fast CRISPR target site identification , 2014, Nature Methods.

[64]  George M. Church,et al.  Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems , 2013, Nucleic acids research.

[65]  C. Ponting,et al.  Sequencing depth and coverage: key considerations in genomic analyses , 2014, Nature Reviews Genetics.

[66]  Yee Wen Choon,et al.  Differential Bees Flux Balance Analysis with OptKnock for In Silico Microbial Strains Optimization , 2014, PloS one.

[67]  C. Barbas,et al.  ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. , 2013, Trends in biotechnology.

[68]  Rolf Müller,et al.  Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting , 2012, Nature Biotechnology.

[69]  Farren J. Isaacs,et al.  Precise Manipulation of Chromosomes in Vivo Enables , 2011 .

[70]  Ryan T Gill,et al.  Codon compression algorithms for saturation mutagenesis. , 2015, ACS synthetic biology.

[71]  U. Sauer,et al.  Regulation and control of metabolic fluxes in microbes. , 2011, Current opinion in biotechnology.

[72]  Martijn A. Huynen,et al.  Inferring Metabolic States in Uncharacterized Environments Using Gene-Expression Measurements , 2013, PLoS Comput. Biol..

[73]  Jingdong Tian,et al.  Circular Polymerase Extension Cloning of Complex Gene Libraries and Pathways , 2009, PloS one.

[74]  Andreas Zell,et al.  Path2Models: large-scale generation of computational models from biochemical pathway maps , 2013, BMC Systems Biology.

[75]  Christopher M. Vockley,et al.  Epigenome editing by a CRISPR/Cas9-based acetyltransferase activates genes from promoters and enhancers , 2015, Nature Biotechnology.

[76]  G. Niu,et al.  Genome engineering and direct cloning of antibiotic gene clusters via phage ϕBT1 integrase-mediated site-specific recombination in Streptomyces , 2015, Scientific Reports.

[77]  Yunde Zhao,et al.  Specific and heritable gene editing in Arabidopsis , 2014, Proceedings of the National Academy of Sciences.

[78]  Chikara Furusawa,et al.  Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum , 2009, Microbial cell factories.

[79]  Rick L. Stevens,et al.  High-throughput generation, optimization and analysis of genome-scale metabolic models , 2010, Nature Biotechnology.

[80]  Matej Oresic,et al.  MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data , 2006, Bioinform..

[81]  Sang Yup Lee,et al.  Model based engineering of Pichia pastoris central metabolism enhances recombinant protein production , 2014, Metabolic engineering.

[82]  Yong-Su Jin,et al.  Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052 , 2011, BMC Systems Biology.

[83]  Rotem Sorek,et al.  CRISPR-mediated adaptive immune systems in bacteria and archaea. , 2013, Annual review of biochemistry.

[84]  Bernhard O. Palsson,et al.  Context-Specific Metabolic Networks Are Consistent with Experiments , 2008, PLoS Comput. Biol..

[85]  G. Church,et al.  Genome-scale promoter engineering by Co-Selection MAGE , 2012, Nature Methods.

[86]  Ryan T Gill,et al.  Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides , 2010, Nature Biotechnology.

[87]  Peter D. Karp,et al.  Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology , 2015, Briefings Bioinform..

[88]  Luke A. Gilbert,et al.  Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression , 2013, Cell.

[89]  Ljubisa Miskovic,et al.  Production of biofuels and biochemicals: in need of an ORACLE. , 2010, Trends in biotechnology.

[90]  Nanette R Boyle,et al.  Multiplexed tracking of combinatorial genomic mutations in engineered cell populations , 2015, Nature Biotechnology.

[91]  N. Price,et al.  Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis , 2010, Proceedings of the National Academy of Sciences.

[92]  Jin-Soo Kim,et al.  Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases , 2014, Bioinform..

[93]  Jason A. Papin,et al.  TIGER: Toolbox for integrating genome-scale metabolic models, expression data, and transcriptional regulatory networks , 2011, BMC Systems Biology.

[94]  Intawat Nookaew,et al.  The RAVEN Toolbox and Its Use for Generating a Genome-scale Metabolic Model for Penicillium chrysogenum , 2013, PLoS Comput. Biol..

[95]  Farren J. Isaacs,et al.  Programming cells by multiplex genome engineering and accelerated evolution , 2009, Nature.

[96]  Jingdong Tian,et al.  Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries , 2011, Nature Protocols.

[97]  Jong Myoung Park,et al.  Genome-scale analysis of Mannheimia succiniciproducens metabolism. , 2007, Biotechnology and bioengineering.

[98]  Jason A. Papin,et al.  Genome-Scale Reconstruction and Analysis of the Pseudomonas putida KT2440 Metabolic Network Facilitates Applications in Biotechnology , 2008, PLoS Comput. Biol..

[99]  J. van der Oost,et al.  Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3 , 2014, Proceedings of the National Academy of Sciences.

[100]  Marcel J. T. Reinders,et al.  Pattern recognition in bioinformatics , 2013, Briefings Bioinform..

[101]  Merja Penttilä,et al.  Yeast oligo-mediated genome engineering (YOGE). , 2013, ACS synthetic biology.

[102]  George M. Church,et al.  CasFinder: Flexible algorithm for identifying specific Cas9 targets in genomes , 2014, bioRxiv.

[103]  P. Kwok,et al.  Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly , 2012, Nature Biotechnology.

[104]  R. Jaenisch,et al.  One-Step Generation of Mice Carrying Reporter and Conditional Alleles by CRISPR/Cas-Mediated Genome Engineering , 2013, Cell.

[105]  Jason A. Papin,et al.  Functional integration of a metabolic network model and expression data without arbitrary thresholding , 2011, Bioinform..

[106]  Jennifer L. Reed,et al.  OptORF: Optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains , 2010, BMC Systems Biology.

[107]  J. Keith Joung,et al.  TALENs: a widely applicable technology for targeted genome editing , 2012, Nature Reviews Molecular Cell Biology.

[108]  J. Keasling,et al.  High-throughput metabolic engineering: advances in small-molecule screening and selection. , 2010, Annual review of biochemistry.

[109]  Y. Kalaidzidis,et al.  Systems survey of endocytosis by multiparametric image analysis , 2010, Nature.

[110]  Sang Yup Lee,et al.  Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network , 2008, Applied Microbiology and Biotechnology.

[111]  J. Reed,et al.  RELATCH: relative optimality in metabolic networks explains robust metabolic and regulatory responses to perturbations , 2012, Genome Biology.

[112]  G. Giaever,et al.  Quantitative Phenotyping via Deep Barcode Sequencing , 2022 .

[113]  Robert F Murphy,et al.  An active role for machine learning in drug development. , 2011, Nature chemical biology.

[114]  Jennifer L Reed,et al.  Constraint-based strain design using continuous modifications (CosMos) of flux bounds finds new strategies for metabolic engineering. , 2013, Biotechnology journal.

[115]  Anne E Carpenter,et al.  Small molecules discovered in a pathway screen target the Rho pathway in cytokinesis , 2010, Nature chemical biology.

[116]  Zoran Nikoloski,et al.  Integration of time-resolved transcriptomics data with flux-based methods reveals stress-induced metabolic adaptation in Escherichia coli , 2012, BMC Systems Biology.

[117]  Radhakrishnan Mahadevan,et al.  Novel approach to engineer strains for simultaneous sugar utilization. , 2013, Metabolic engineering.

[118]  James C Liao,et al.  Ensemble Modeling for Robustness Analysis in engineering non-native metabolic pathways. , 2014, Metabolic engineering.

[119]  Qiong Wu,et al.  Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: Controllable P(3HB-co-4HB) biosynthesis. , 2015, Metabolic engineering.

[120]  Harris H. Wang,et al.  MODEST: a web-based design tool for oligonucleotide-mediated genome engineering and recombineering , 2014, Nucleic Acids Res..

[121]  Pablo Carbonell,et al.  XTMS: pathway design in an eXTended metabolic space , 2014, Nucleic Acids Res..

[122]  Alfonso Jaramillo,et al.  DESHARKY: automatic design of metabolic pathways for optimal cell growth , 2008, Bioinform..

[123]  Debkumar Chakraborty,et al.  Metabolic engineering of Pediococcus acidilactici BD16 for production of vanillin through ferulic acid catabolic pathway and process optimization using response surface methodology , 2014, Applied Microbiology and Biotechnology.

[124]  István Nagy,et al.  Conditional DNA repair mutants enable highly precise genome engineering , 2014, Nucleic acids research.

[125]  J. Keasling,et al.  Engineering a mevalonate pathway in Escherichia coli for production of terpenoids , 2003, Nature Biotechnology.

[126]  Jonathan R. Karr,et al.  A Whole-Cell Computational Model Predicts Phenotype from Genotype , 2012, Cell.

[127]  Zengyi Shao,et al.  DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways , 2008, Nucleic acids research.

[128]  Jens Nielsen,et al.  Evolutionary programming as a platform for in silico metabolic engineering , 2005, BMC Bioinformatics.

[129]  Suzanne M. Paley,et al.  The Pathway Tools cellular overview diagram and Omics Viewer , 2006, Nucleic acids research.

[130]  George M Church,et al.  Multiplexed genome engineering and genotyping methods applications for synthetic biology and metabolic engineering. , 2011, Methods in enzymology.

[131]  Ali R. Zomorrodi,et al.  Optimization-driven identification of genetic perturbations accelerates the convergence of model parameters in ensemble modeling of metabolic networks. , 2013, Biotechnology journal.

[132]  Sylvestre Marillonnet,et al.  Golden Gate cloning. , 2014, Methods in molecular biology.

[133]  J. Keith Joung,et al.  High frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells , 2013, Nature Biotechnology.

[134]  B. Dujon,et al.  Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae , 1995, Molecular and cellular biology.

[135]  Feng Zhang,et al.  Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system , 2013, Nucleic acids research.

[136]  E. Cox,et al.  Site-specific chromosomal integration of large synthetic constructs , 2010, Nucleic acids research.

[137]  Costas D. Maranas,et al.  OptForce: An Optimization Procedure for Identifying All Genetic Manipulations Leading to Targeted Overproductions , 2010, PLoS Comput. Biol..

[138]  Susumu Goto,et al.  PathPred: an enzyme-catalyzed metabolic pathway prediction server , 2010, Nucleic Acids Res..

[139]  Judy Qiu,et al.  Total Synthesis of a Functional Designer Eukaryotic Chromosome , 2014, Science.

[140]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[141]  B. Wanner,et al.  One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[142]  Jameson K. Rogers,et al.  Evolution-guided optimization of biosynthetic pathways , 2014, Proceedings of the National Academy of Sciences.

[143]  Lolke Sijtsma,et al.  Genome-scale metabolic model for Lactococcus lactis MG1363 and its application to the analysis of flavor formation , 2013, Applied Microbiology and Biotechnology.

[144]  W. Edelmann,et al.  SLiCE: a novel bacterial cell extract-based DNA cloning method , 2012, Nucleic acids research.

[145]  Jens Boch,et al.  Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors , 2009, Science.

[146]  N. Costantino,et al.  Probing cellular processes with oligo-mediated recombination and using the knowledge gained to optimize recombineering. , 2011, Journal of molecular biology.

[147]  Adam M. Feist,et al.  Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-Path. , 2014, Metabolic engineering.

[148]  Adam P. Arkin,et al.  GLAMM: Genome-Linked Application for Metabolic Maps , 2011, Nucleic Acids Res..

[149]  J. Keasling,et al.  Microbial engineering for the production of advanced biofuels , 2012, Nature.

[150]  Sang Yup Lee,et al.  Genome-scale metabolic model of methylotrophic yeast Pichia pastoris and its use for in silico analysis of heterologous protein production. , 2010, Biotechnology journal.

[151]  Jay D Keasling,et al.  CasEMBLR: Cas9-Facilitated Multiloci Genomic Integration of in Vivo Assembled DNA Parts in Saccharomyces cerevisiae. , 2015, ACS synthetic biology.

[152]  Sheng Yang,et al.  Multigene Editing in the Escherichia coli Genome via the CRISPR-Cas9 System , 2015, Applied and Environmental Microbiology.

[153]  J. Liao,et al.  Ensemble modeling of metabolic networks. , 2008, Biophysical journal.

[154]  Nathan D. Price,et al.  Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE , 2012, BMC Systems Biology.

[155]  D. G. Gibson,et al.  Enzymatic assembly of DNA molecules up to several hundred kilobases , 2009, Nature Methods.

[156]  Magnus Lundgren,et al.  Efficient programmable gene silencing by Cascade , 2014, Nucleic acids research.

[157]  Matthew J. Huentelman,et al.  IDENTIFICATION OF GENETIC VARIANTS USING BARCODED MULTIPLEXED SEQUENCING , 2008, Nature Methods.

[158]  James D. Winkler,et al.  Bacterial Recombineering: Genome Engineering via Phage-Based Homologous Recombination. , 2015, ACS synthetic biology.

[159]  J. Keasling,et al.  Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development , 2014, Nature Reviews Microbiology.

[160]  Y. Yoshikuni,et al.  Implementation of stable and complex biological systems through recombinase-assisted genome engineering , 2013, Nature Communications.

[161]  A. Camilli,et al.  Tn-seq; high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms , 2009, Nature Methods.

[162]  Robert P. St.Onge,et al.  Highly-multiplexed barcode sequencing: an efficient method for parallel analysis of pooled samples , 2010, Nucleic acids research.

[163]  R. Aebersold,et al.  mProphet: automated data processing and statistical validation for large-scale SRM experiments , 2011, Nature Methods.

[164]  Ernesto S. Nakayasu,et al.  Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation , 2012, Molecular systems biology.

[165]  Hyohak Song,et al.  Enhanced butanol production through extractive fermentation with synthetic resins , 2010 .

[166]  James E. DiCarlo,et al.  Supplementary Materials for RNA-Guided Human Genome Engineering via Cas 9 , 2012 .

[167]  Peng Xu,et al.  Redirecting carbon flux into malonyl-CoA to improve resveratrol titers: Proof of concept for genetic interventions predicted by OptForce computational framework , 2013 .

[168]  Maxime Durot,et al.  Rapid and reliable DNA assembly via ligase cycling reaction. , 2014, ACS synthetic biology.

[169]  Ryan T Gill,et al.  Strategy for directing combinatorial genome engineering in Escherichia coli , 2012, Proceedings of the National Academy of Sciences.

[170]  K. Murphy,et al.  Use of Bacteriophage λ Recombination Functions To Promote Gene Replacement in Escherichia coli , 1998, Journal of bacteriology.

[171]  J. García-Martínez,et al.  Short motif sequences determine the targets of the prokaryotic CRISPR defence system. , 2009, Microbiology.