Converting Wannier into Frenkel excitons in an inorganic/organic hybrid semiconductor nanostructure.

Electronic coupling between Wannier and Frenkel excitons in an inorganic/organic semiconductor hybrid structure is experimentally observed. Time-resolved photoluminescence and excitation spectroscopy directly demonstrate that electronic excitation energy can be transferred with an efficiency of up to 50% from an inorganic ZnO quantum well to an organic [2,2-p-phenylenebis-(5-phenyloxazol), alpha-sexithiophene] overlayer. The coupling is mediated via dipole-dipole-interaction analog to the Förster transfer in donor-acceptor systems.