Stereoscopic particle tracking for 3D touch, vision and closed-loop control in optical tweezers

Force measurement in an interactive 3D micromanipulation system can allow the user to make delicate adjustments, and to explore surfaces with touch as well as vision. We present a system to achieve this on the micron scale using stereoscopic particle tracking combined with holographic optical tweezers, which can track particles with nanometre accuracy. 2D tracking of particles in each of the stereo images gives 3D positions for each particle. This takes less than 200 µs per image pair, using a 1D 'symmetry transform' applied to each row and column of a 2D image, which can maintain tracking of particles throughout the 10 µm axial range. The only parameters required are the geometry of the imaging system, and therefore there is no need to recalibrate for different particle sizes or refractive indices. Consequently, we can calculate the force exerted by the optical trap in real time at 1 kilohertz, allowing us to implement a force-feedback interface (with a loop rate of 400 Hz). In combination with our OpenGL hologram calculation engine, the system has a closed-loop bandwidth of 20 Hz. This allows us to stabilize trapped particles axially through active feedback, cancelling out some Brownian motion. For the weak traps we use here (spring constant k≈2 pN µm − 1), this results in a threefold increase in axial stiffness. We demonstrate the 3D interface by probing an oil droplet, mapping out its surface in the y–z plane.

[1]  R. Piestun,et al.  Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system. , 2008, Optics express.

[2]  D. Grier,et al.  Methods of Digital Video Microscopy for Colloidal Studies , 1996 .

[3]  R. T. Tregear,et al.  Movement and force produced by a single myosin head , 1995, Nature.

[4]  E. Sackmann,et al.  On the measurement of weak repulsive and frictional colloidal forces by reflection interference contrast microscopy , 1992 .

[5]  J. Glückstad,et al.  Multi-particle three-dimensional coordinate estimation in real-time optical manipulation , 2009 .

[6]  Murti V. Salapaka,et al.  High bandwidth force estimation for optical tweezers , 2009 .

[7]  O. Otto,et al.  Erratum: “Optical tweezers with 2.5 kHz bandwidth video detection for single-colloid electrophoresis” [Rev. Sci. Instrum. 79, 023710 (2008)] , 2012 .

[8]  Watt W. Webb,et al.  Measurement of small forces using an optical trap , 1994 .

[9]  O. Otto,et al.  Optical tweezers with 2.5 kHz bandwidth video detection for single-colloid electrophoresis. , 2008, The Review of scientific instruments.

[10]  Stéphane Régnier,et al.  Touching the microworld with force-feedback optical tweezers. , 2009, Optics express.

[11]  Jesper Glückstad,et al.  Three-dimensional imaging in three-dimensional optical multi-beam micromanipulation. , 2008, Optics express.

[12]  Christopher D Saunter,et al.  Quantifying subpixel accuracy: an experimental method for measuring accuracy in image-correlation-based, single-particle tracking. , 2010, Biophysical journal.

[13]  M. Hochella,et al.  Experimentally derived sticking efficiencies of microparticles using atomic force microscopy. , 2003, Environmental science & technology.

[14]  Graham M. Gibson,et al.  Assembly and force measurement with SPM-like probes in holographic optical tweezers , 2009 .

[15]  J. Leach,et al.  Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers , 2007 .

[16]  Christoph F. Schmidt,et al.  Direct observation of kinesin stepping by optical trapping interferometry , 1993, Nature.

[17]  Wolfgang Singer,et al.  Three-dimensional force calibration of optical tweezers , 2000 .

[18]  Håkan Wennerström,et al.  Role of hydration and water structure in biological and colloidal interactions , 1996, Nature.

[19]  Keiji Sasaki,et al.  Three-dimensional Potential Analysis Of Radiation Pressure Exerted On A Single Microparticle , 1997, QELS '97., Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[20]  Jan Greve,et al.  Three dimensional single-particle tracking with nanometer resolution , 1998 .

[21]  E. Stelzer,et al.  Trapping and tracking a local probe with a photonic force microscope , 2004 .

[22]  Peter Bøggild,et al.  Actuation of microfabricated tools using multiple GPC-based counterpropagating-beam traps. , 2005, Optics express.

[23]  Kurt D. Wulff,et al.  Servo control of an optical trap. , 2007, Applied optics.

[24]  Jonathan Leach,et al.  Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy. , 2008, Optics express.

[25]  H. Rubinsztein-Dunlop,et al.  Three-dimensional imaging with optical tweezers. , 1999, Applied optics.

[26]  D. Grier A revolution in optical manipulation , 2003, Nature.

[27]  Fabrication of microstructures for optically driven micromachines using two-photon photopolymerization of UV curing resins , 2008, 0810.5585.

[28]  E. Stelzer,et al.  High‐resolution axial and lateral position sensing using two‐photon excitation of fluorophores by a continuous‐wave Nd:YAG laser , 1996 .

[29]  Charlie Gosse,et al.  Magnetic tweezers: micromanipulation and force measurement at the molecular level. , 2002, Biophysical journal.

[30]  Edward Hæggström,et al.  Stiffer Optical Tweezers through Real-Time Feedback Control , 2008 .

[31]  Lars Friedrich,et al.  Interferometric 3D tracking of several particles in a scanning laser focus. , 2009, Optics express.

[32]  Johannes Courtial,et al.  Assembly of 3-dimensional structures using programmable holographic optical tweezers. , 2004, Optics express.

[33]  Rafael Piestun,et al.  Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system , 2009 .

[34]  Anna Linnenberger,et al.  Increasing Trap Stiffness with Position Clamping in Holographic Optical Tweezers , 2022 .

[35]  Ernst H. K. Stelzer,et al.  Local viscosity probed by photonic force microscopy , 1998 .

[36]  H. Flyvbjerg,et al.  Power spectrum analysis for optical tweezers , 2004 .

[37]  Jonathan Leach,et al.  An optical trapped microhand for manipulating micron-sized objects. , 2006, Optics express.

[38]  Adrian W. Bowman,et al.  Computational aspects of nonparametric smoothing with illustrations from the sm library , 2003, Comput. Stat. Data Anal..

[39]  R. Silver,et al.  A compact Acousto-Optic Lens for 2D and 3D femtosecond based 2-photon microscopy. , 2010, Optics express.

[40]  Bo Sun,et al.  Flow visualization and flow cytometry with holographic video microscopy. , 2009 .

[41]  H J Tiziani,et al.  Optical particle trapping with computer-generated holograms written on a liquid-crystal display. , 1999, Optics letters.

[42]  S Keen,et al.  Comparison of Faxén's correction for a microsphere translating or rotating near a surface. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[44]  Johannes Courtial,et al.  Interactive approach to optical tweezers control. , 2006, Applied optics.

[45]  A. Ashkin Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. , 1992, Methods in cell biology.

[46]  Miles Padgett,et al.  Particle tracking stereomicroscopy in optical tweezers: control of trap shape. , 2010, Optics express.