Boosting theoretical zeolitic framework generation for the determination of new materials structures using GPU programming.

Evolutionary algorithms have proved to be efficient for solving complicated optimization problems. On the other hand, the many-core architecture in graphical cards "General Purpose Graphic Processing Unit" (GPGPU) offers one of the most attractive cost/performance ratio. Using such hardware, the manuscript shows how an efficiently implemented genetic algorithm with a simple fitness function allows boosting the determination of zeolite structures. A case study is presented.

[1]  A. F. Wells The geometrical basis of crystal chemistry. Part 1 , 1954 .

[2]  J. Smith,et al.  Enumeration of 4-connected 3-dimensional nets and classification of framework silicates; I, Perpendicular linkage from simple hexagonal net , 1977 .

[3]  J. Smith,et al.  Enumeration of 4-connected 3-dimensional nets and classification of framework silicates, II, Perpendicular and near-perpendicular linkages from 4.8 2 ,3.12 2 and 4.6.12 nets , 1978 .

[4]  Joseph V. Smith Enumeration of 4-connected 3-dimensional nets and classification of framework silicates; III, Combination of helix, and zigzag, crankshaft and saw chains with simple 2D nets , 1979 .

[5]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[6]  J. M. Newsam,et al.  Determination of 4-connected framework crystal structures by simulated annealing , 1989, Nature.

[7]  J. Pannetier,et al.  Prediction of crystal structures from crystal chemistry rules by simulated annealing , 1990, Nature.

[8]  Michael W. Deem,et al.  Framework crystal structure solution by simulated annealing : test application to known zeolite structures , 1992 .

[9]  A. W. M. Dress,et al.  The classification of face-transitive periodic three-dimensional tilings , 1993 .

[10]  Monte B. Boisen,et al.  Framework silica structures generated using simulated annealing with a potential energy function based on an H6Si2O7 molecule , 1994 .

[11]  J. Gale,et al.  Self-consistent interatomic potentials for the simulation of binary and ternary oxides , 1994 .

[12]  Gibbs,et al.  First-principles study of several hypothetical silica framework structures. , 1995, Physical review. B, Condensed matter.

[13]  J. C. Schön,et al.  First Step Towards Planning of Syntheses in Solid‐State Chemistry: Determination of Promising Structure Candidates by Global Optimization , 1996 .

[14]  D. Akporiaye,et al.  UiO-7: A New Aluminophosphate Phase Solved by Simulated Annealing and High-Resolution Powder Diffraction , 1996 .

[15]  Julian D. Gale,et al.  GULP: A computer program for the symmetry-adapted simulation of solids , 1997 .

[16]  Michael Treacy,et al.  Enumeration of periodic tetrahedral frameworks , 1997 .

[17]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[18]  E. Koch,et al.  Crystal structures. I. Patterns and symmetry , 1997 .

[19]  Marek Sierka,et al.  Structure and reactivity of silica and zeolite catalysts by a combined quantum mechanics[ndash ]shell-model potential approach based on DFT , 1997 .

[20]  Arne Karlsson,et al.  Combinatorial Approach to the Hydrothermal Synthesis of Zeolites. , 1998, Angewandte Chemie.

[21]  Jacek Klinowski,et al.  Systematic enumeration of crystalline networks , 1999, Nature.

[22]  J. Gale,et al.  The prediction of inorganic crystal structures using a genetic algorithm and energy minimisation , 1999 .

[23]  Michael O'Keeffe,et al.  A generation of framework structures for the tectosilicates using a molecular-based potential energy function and simulated annealing strategies , 1999 .

[24]  M. Deem,et al.  A biased Monte Carlo scheme for zeolite structure solution , 1998, cond-mat/9809085.

[25]  H. Scheraga,et al.  Global optimization of clusters, crystals, and biomolecules. , 1999, Science.

[26]  Evgeny N Vulfson,et al.  Template-Mediated Synthesis of a Polymeric Receptor Specific to Amino Acid Sequences. , 1999, Angewandte Chemie.

[27]  R. Johnston,et al.  A genetic algorithm for the structural optimization of Morse clusters , 2000 .

[28]  Roy L. Johnston,et al.  Implementation of Lamarckian concepts in a Genetic Algorithm for structure solution from powder diffraction data , 2000 .

[29]  A. Meystel,et al.  Intelligent Systems , 2001 .

[30]  Kee-Sun Sohn,et al.  Search for Long Phosphorescence Materials by Combinatorial Chemistry Method , 2001 .

[31]  Thomas Maschmeyer,et al.  High-speed experimentation techniques applied to the study of the synthesis of zeolites and silsesquioxanes , 2002 .

[32]  C. R. A. Catlow,et al.  The prediction of close packed and porous inorganic crystal structures , 2002 .

[33]  R. Johnston Evolving better nanoparticles: Genetic algorithms for optimising cluster geometries , 2003 .

[34]  Claude Mirodatos,et al.  How to Design Diverse Libraries of Solid Catalysts , 2003 .

[35]  Vince Murphy,et al.  A fully integrated high-throughput screening methodology for the discovery of new polyolefin catalysts: discovery of a new class of high temperature single-site group (IV) copolymerization catalysts. , 2003, Journal of the American Chemical Society.

[36]  Jacek Klinowski,et al.  Chemically feasible hypothetical crystalline networks , 2004, Nature materials.

[37]  Igor Rivin,et al.  Enumeration of periodic tetrahedral frameworks. II. Polynodal graphs , 2004 .

[38]  Claude Mirodatos,et al.  The development of descriptors for solids: teaching "catalytic intuition" to a computer. , 2004, Angewandte Chemie.

[39]  Jennifer S. Holmgren,et al.  Strategies and applications of combinatorial methods and high throughput screening to the discovery of non-noble metal catalyst , 2004 .

[40]  Armel Le Bail,et al.  Inorganic structure prediction with GRINSP , 2005 .

[41]  Saïd Salhi,et al.  Strategies for increasing the efficiency of a genetic algorithm for the structural optimization of nanoalloy clusters , 2005, J. Comput. Chem..

[42]  Claude Mirodatos,et al.  Design of Discovery Libraries for Solids Based on QSAR Models , 2005 .

[43]  Matt Probert,et al.  A periodic genetic algorithm with real-space representation for crystal structure and polymorph prediction , 2006, cond-mat/0605066.

[44]  José M. Serra,et al.  A New Mapping/Exploration Approach for HT Synthesis of Zeolites , 2006 .

[45]  A. Oganov,et al.  Crystal structure prediction using ab initio evolutionary techniques: principles and applications. , 2006, The Journal of chemical physics.

[46]  Frédéric Clerc,et al.  High throughput experimentation in oxidation catalysis: Higher integration and “intelligent” software , 2006 .

[47]  Scott M Woodley,et al.  Engineering microporous architectures: combining evolutionary algorithms with predefined exclusion zones. , 2007, Physical chemistry chemical physics : PCCP.

[48]  Jose Manuel Serra,et al.  Zeolite synthesis modelling with support vector machines: a combinatorial approach. , 2007, Combinatorial chemistry & high throughput screening.

[49]  A. Corma,et al.  A Molecular mechanism for the chemoselective hydrogenation of substituted nitroaromatics with nanoparticles of gold on TiO2 catalysts: a cooperative effect between gold and the support. , 2007, Journal of the American Chemical Society.

[50]  Klaus Schulten,et al.  Accelerating Molecular Modeling Applications with GPU Computing , 2009 .

[51]  Naga K. Govindaraju,et al.  A Survey of General‐Purpose Computation on Graphics Hardware , 2007 .

[52]  Yihan Shao,et al.  Accelerating resolution-of-the-identity second-order Møller-Plesset quantum chemistry calculations with graphical processing units. , 2008, The journal of physical chemistry. A.

[53]  Manuel Moliner,et al.  A reliable methodology for high throughput identification of a mixture of crystallographic phases from powder X-ray diffraction data , 2008 .

[54]  Pedro Serna,et al.  Combining high-throughput experimentation, advanced data modeling and fundamental knowledge to develop catalysts for the epoxidation of large olefins and fatty esters , 2008 .

[55]  Ivan S Ufimtsev,et al.  Quantum Chemistry on Graphical Processing Units. 1. Strategies for Two-Electron Integral Evaluation. , 2008, Journal of chemical theory and computation.

[56]  A. Corma,et al.  Enzyme-like specificity in zeolites: a unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO. , 2008, Journal of the American Chemical Society.

[57]  Michael O'Keeffe,et al.  Three-periodic nets and tilings: regular and related infinite polyhedra. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[58]  Koji Yasuda,et al.  Accelerating Density Functional Calculations with Graphics Processing Unit. , 2008, Journal of chemical theory and computation.

[59]  S. Woodley,et al.  Crystal structure prediction from first principles. , 2008, Nature materials.

[60]  Joshua A. Anderson,et al.  General purpose molecular dynamics simulations fully implemented on graphics processing units , 2008, J. Comput. Phys..

[61]  A. Corma,et al.  First colorimetric sensor array for the identification of quaternary ammonium salts , 2009 .

[62]  Manuel Moliner,et al.  Design of a full-profile-matching solution for high-throughput analysis of multiphase samples through powder X-ray diffraction. , 2009, Chemistry.

[63]  A. Corma,et al.  Unravelling the Nature of Gold Surface Sites by Combining IR Spectroscopy and DFT Calculations. Implications in Catalysis , 2009 .

[64]  Avelino Corma,et al.  Reactivity in the confined spaces of zeolites: the interplay between spectroscopy and theory to develop structure-activity relationships for catalysis. , 2009, Physical chemistry chemical physics : PCCP.

[65]  A. Corma,et al.  Dual-response colorimetric sensor array for the identification of amines in water based on supramolecular host-guest complexation , 2009 .

[66]  A. Corma,et al.  Active sites for H2 adsorption and activation in Au/TiO2 and the role of the support. , 2009, The journal of physical chemistry. A.

[67]  A. Corma,et al.  A colorimetric sensor array for the detection of the date-rape drug γ-hydroxybutyric acid (GHB): a supramolecular approach. , 2010, Chemistry.