Cuts for circular proofs: semantics and cut-elimination

One of the authors introduced in [Santocanale, FoSSaCS, 2002] a calculus of circular proofs for studying the computability arising from the following categorical operations: finite products, finite coproducts, initial algebras, final coalgebras. The calculus presented [Santocanale, FoSSaCS, 2002] is cut-free; even if sound and complete for provability, it lacked an important property for the semantics of proofs, namely fullness w.r.t. the class of intended categorical models (called mu-bicomplete categories in [Santocanale, ITA, 2002]). In this paper we fix this problem by adding the cut rule to the calculus and by modifying accordingly the syntactical constraint ensuring soundness of proofs. The enhanced proof system fully represents arrows of the canonical model (a free mu-bicomplete category). We also describe a cut-elimination procedure as a a model of computation arising from the above mentioned categorical operations. The procedure constructs a cut-free proof-tree with possibly infinite branches out of a finite circular proof with cuts.

[1]  Robert L. Constable,et al.  Infinite Objects in Type Theory , 1986, LICS.

[2]  James Brotherston,et al.  Sequent calculi for induction and infinite descent , 2011, J. Log. Comput..

[3]  S. Lane Categories for the Working Mathematician , 1971 .

[4]  J. Robin B. Cockett,et al.  Strong Categorical Datatypes II: A Term Logic for Categorical Programming , 1995, Theor. Comput. Sci..

[5]  David Baelde,et al.  Least and Greatest Fixed Points in Linear Logic , 2007, TOCL.

[6]  Luigi Santocanale A Calculus of Circular Proofs and Its Categorical Semantics , 2002, FoSSaCS.

[7]  Igor Walukiewicz,et al.  Games for the mu-Calculus , 1996, Theor. Comput. Sci..

[8]  Jean-Eric Pin,et al.  Infinite words - automata, semigroups, logic and games , 2004, Pure and applied mathematics series.

[9]  Martin Hofmann,et al.  A Proof System for the Linear Time µ-Calculus , 2006, FSTTCS.

[10]  Grigore Rosu,et al.  Circular Coinduction: A Proof Theoretical Foundation , 2009, CALCO.

[11]  Jacques Bouveresse,et al.  Introduction à la logique , 1989 .

[12]  Igor Walukiewicz,et al.  Completeness of Kozen's Axiomatisation of the Propositional µ-Calculus , 2000, Inf. Comput..

[13]  L. Santocanale,et al.  Free μ-lattices , 2000 .

[14]  N. P. Mendler,et al.  Inductive Types and Type Constraints in the Second-Order lambda Calculus , 1991, Ann. Pure Appl. Log..

[15]  Ekaterina Komendantskaya,et al.  Inductive and Coinductive Components of Corecursive Functions in Coq , 2008, CMCS.

[16]  Didier Caucal,et al.  On infinite transition graphs having a decidable monadic theory , 1996, Theor. Comput. Sci..

[17]  Thomas Studer,et al.  On the Proof Theory of the Modal mu-Calculus , 2008, Stud Logica.

[18]  J. Robin B. Cockett,et al.  Induction, Coinduction, and Adjoints , 2003, CTCS.

[19]  Luigi Santocanale µ-Bicomplete Categories and Parity Games , 2002, RAIRO Theor. Informatics Appl..