Further considerations on the high-cycle fatigue of micron-scale polycrystalline silicon

Abstract Bulk silicon is not susceptible to high-cycle fatigue but micron-scale silicon films are. Using polysilicon resonators to determine stress-lifetime fatigue behavior in several environments, oxide layers are found to show up to four-fold thickening after cycling, which is not seen after monotonic loading or after cycling in vacuo. We believe that the mechanism of thin-film silicon fatigue is “reaction-layer fatigue”, involving cyclic stress-induced thickening of the oxide and moisture-assisted cracking within this layer.

[1]  A. Argon,et al.  Simulation of plasticity in nanocrystalline silicon , 2007 .

[2]  Eric A. Stach,et al.  Mechanisms for Fatigue of Micron‐Scale Silicon Structural Films , 2006 .

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  M. Swain,et al.  Microstructure evolution in monocrystalline silicon in cyclic microindentations , 2003 .

[5]  R. Ritchie Mechanisms of fatigue-crack propagation in ductile and brittle solids , 1999 .

[6]  Peter Gumbsch,et al.  High-cycle fatigue and strengthening in polycrystalline silicon , 2008 .

[7]  R. Ballarini,et al.  Fatigue Failure in Polysilicon Not Due to Simple Stress Corrosion Cracking , 2002, Science.

[8]  Gautam R. Desiraju,et al.  Current Opinion in Solid State & Materials Science , 2001 .

[9]  John L. Crassidis,et al.  Sensors and actuators , 2005, Conference on Electron Devices, 2005 Spanish.

[10]  C. L. Muhlstein,et al.  High-cycle fatigue of micron-scale polycrystalline silicon films: fracture mechanics analyses of the role of the silica/silicon interface , 2003 .

[11]  O. Pierron,et al.  Notch Root Oxide Formation During Fatigue of Polycrystalline Silicon Structural Films , 2007, Journal of Microelectromechanical Systems.

[12]  M. Swain,et al.  Cyclic microindentations on monocrystalline silicon in air and in water , 2004 .

[13]  Eric A. Stach,et al.  A reaction-layer mechanism for the delayed failure of micron-scale polycrystalline silicon structural films subjected to high-cycle fatigue loading , 2002 .

[14]  Pranav Shrotriya,et al.  Surface topography evolution and fatigue fracture in polysilicon MEMS structures , 2003 .

[15]  William N. Sharpe,et al.  Fatigue of polycrystalline silicon under long-term cyclic loading , 2003 .

[16]  E. Stach,et al.  Room temperature dislocation plasticity in silicon , 2005 .

[17]  T. S. Moss,et al.  Handbook on semiconductors , 1980 .

[18]  O. Pierron,et al.  The critical role of environment in fatigue damage accumulation in deep-reactive ion-etched single-crystal silicon structural films , 2006, Journal of Microelectromechanical Systems.

[19]  Richard K. Brow,et al.  Journal of the American Ceramic Society: Introduction , 2002 .

[20]  M. Swain,et al.  Transmission electron microscopy observation of deformation microstructure under spherical indentation in silicon , 2000 .

[21]  Roberto Ballarini,et al.  Mechanical fatigue of polysilicon: Effects of mean stress and stress amplitude , 2006 .

[22]  J. Thomson,et al.  Philosophical Magazine , 1945, Nature.

[23]  Dragan Panti,et al.  Handbook on semiconductors , 1998 .

[24]  Eric A. Stach,et al.  Mechanism of fatigue in micron-scale films of polycrystalline silicon for microelectromechanical systems , 2002 .

[25]  Alan Robins,et al.  Guest Editorial: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science , 2010 .

[26]  R. Ritchie,et al.  High-cycle fatigue of single-crystal silicon thin films , 2001 .

[27]  J. Connally,et al.  Slow Crack Growth in Single-Crystal Silicon , 1992, Science.

[28]  Roberto Ballarini,et al.  Surface oxide effects on failure of polysilicon MEMS after cyclic and monotonic loading , 2008 .

[29]  R. Singer,et al.  Advanced engineering materials , 2015 .

[30]  J. Bogdanoff,et al.  On the Theory of Dislocations , 1950 .

[31]  Sheldon M. Wiederhorn,et al.  A Chemical Interpretation of Static Fatigue , 1972 .

[32]  Roberto Ballarini,et al.  Dynamic fatigue of silicon , 2004 .

[33]  Eric A. Stach,et al.  Fatigue failure in thin-film polycrystalline silicon is due to subcritical cracking within the oxide layer , 2005 .

[34]  B. Lawn,et al.  Bulk silicon is susceptible to fatigue , 2007 .

[35]  Eric A. Stach,et al.  Very high-cycle fatigue failure in micron-scale polycrystalline silicon films : Effects of environment and surface oxide thickness , 2007 .

[36]  O. Pierron,et al.  The Extended Range of Reaction-layer Fatigue Susceptibility of Polycrystalline Silicon Thin Films , 2005 .