Simultaneous multiple optical flow estimation

The authors propose a simultaneous closed-form estimation method for multiple optical flow from image sequences in which each image point has multiple motions. This method only requires convolution for space-time filtering and low-dimensional eigensystem analysis as an optimization process. The authors propose a mixture flow model of a multiple flow and energy integral minimization as a model fitting method. It is shown that symmetry between component flows of the mixture flow can reduce the dimension of the eigensystem and make the optimization unimodal and stable. Successful experiments on double-flow estimation of random texture patterns and natural scene images are reported.<<ETX>>

[1]  Dennis Gabor,et al.  Theory of communication , 1946 .

[2]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[3]  L. Landau Quantum Mechanics-Nonrelativistic Theory , 1958 .

[4]  Carl W. Helstrom,et al.  An expansion of a signal in Gaussian elementary signals (Corresp.) , 1966, IEEE Trans. Inf. Theory.

[5]  A. Oppenheim,et al.  Nonlinear filtering of multiplied and convolved signals , 1968 .

[6]  O. Tretiak,et al.  Separator functions for homomorphic filtering , 1976 .

[7]  Claude L. Fennema,et al.  Velocity determination in scenes containing several moving objects , 1979 .

[8]  H. C. Longuet-Higgins,et al.  The interpretation of a moving retinal image , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[9]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[10]  Takeo Kanade,et al.  Adapting optical-flow to measure object motion in reflectance and x-ray image sequences (abstract only) , 1984, COMG.

[11]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[12]  A J Ahumada,et al.  Model of human visual-motion sensing. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[13]  Gilad Adiv,et al.  Determining Three-Dimensional Motion and Structure from Optical Flow Generated by Several Moving Objects , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[15]  Berthold K. P. Horn Robot vision , 1986, MIT electrical engineering and computer science series.

[16]  Shahriar Negahdaripour,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence , 2004 .

[17]  Harry Wechsler,et al.  Derivation of optical flow using a spatiotemporal-Frequency approach , 1987, Comput. Vis. Graph. Image Process..

[18]  John G. Daugman,et al.  Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression , 1988, IEEE Trans. Acoust. Speech Signal Process..

[19]  Yehoshua Y. Zeevi,et al.  The Generalized Gabor Scheme of Image Representation in Biological and Machine Vision , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  David J. Fleet,et al.  Computation of normal velocity from local phase information , 1989, Proceedings CVPR '89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.