Ascaris suum: A Useful Model for Anaerobic Mitochondrial Metabolism and the Aerobic- anaerobic Transition in Developing Parasitic Helminths

[1]  R. Komuniecki,et al.  Immunochemical characterization of the pyruvate dehydrogenase complex in adult Ascaris suum and its developing larvae. , 1987, Molecular and biochemical parasitology (Print).

[2]  P. Komuniecki,et al.  Biochemical changes during the aerobic-anaerobic transition in Ascaris suum larvae. , 1987, Molecular and biochemical parasitology.

[3]  R. Komuniecki,et al.  Improved purification of the pyruvate dehydrogenase complex from Ascaris suum body wall muscle and characterization of PDHa kinase activity. , 1986, Molecular and biochemical parasitology.

[4]  R. Furushima,et al.  Electron-transfer complexes of Ascaris suum muscle mitochondria. II. Succinate-coenzyme Q reductase (complex II) associated with substrate-reducible cytochrome b-558. , 1986, Biochimica et biophysica acta.

[5]  H. Saz,et al.  Purification and properties of an acyl CoA transferase from Ascaris suum muscle mitochondria. , 1986, Comparative biochemistry and physiology. B, Comparative biochemistry.

[6]  P. Köhler,et al.  The strategies of energy conservation in helminths. , 1985, Molecular and biochemical parasitology.

[7]  R. Komuniecki,et al.  Purification and characterization of the 2-methyl branched-chain Acyl-CoA dehydrogenase, an enzyme involved in NADH-dependent enoyl-CoA reduction in anaerobic mitochondria of the nematode, Ascaris suum. , 1985, The Journal of biological chemistry.

[8]  P. Srere 1 – Organization of Proteins within the Mitochondrion , 1985 .

[9]  R. Furushima,et al.  Electron transfer complexes of Ascaris suum muscle mitochondria: I. Characterization of NADH-cytochrome c reductase (complex I-III), with special reference to cytochrome localization. , 1984, Molecular and biochemical parasitology.

[10]  R. Komuniecki,et al.  2-Methylbutyryl CoA dehydrogenase from mitochondria of Ascaris suum and its relationship to NADH-dependent 2-methylcrotonyl CoA reduction. , 1984, Biochemical and biophysical research communications.

[11]  Y. Han,et al.  Purification and characterization of methylmalonyl-CoA mutase from Ascaris lumbricoides. , 1984, Comparative biochemistry and physiology. B, Comparative biochemistry.

[12]  H. Saz,et al.  2-Methylacetoacetyl-coenzyme A reductase from Ascaris muscle: purification and properties. , 1983, Archives of biochemistry and biophysics.

[13]  R. Komuniecki,et al.  Regulation of the Ascaris suum pyruvate dehydrogenase complex by phosphorylation and dephosphorylation. , 1983, Molecular and biochemical parasitology.

[14]  J. Urban,et al.  Factors contributing to the in vitro development of Ascaris suum from second-stage larvae to mature adults. , 1983, The Journal of parasitology.

[15]  P. Komuniecki,et al.  Pathway of formation of branched-chain volatile fatty acids in Ascaris mitochondria. , 1981, The Journal of parasitology.

[16]  H. Saz Energy metabolisms of parasitic helminths: adaptations to parasitism. , 1981, Annual review of physiology.

[17]  H. Saz,et al.  Phosphorylation associated with succinate decarboxylation to propionate in Ascaris mitochondria. , 1980, Archives of biochemistry and biophysics.

[18]  P. Köhler,et al.  Mechanisms of respiration and phosphorylation in Ascaris muscle mitochondria. , 1980, Molecular and biochemical parasitology.

[19]  B. G. Harris,et al.  Purification, Characterization, and the Presumptive Role of Fumarase in the Energy Metabolism of Ascaris suum , 1979 .

[20]  R. Komuniecki,et al.  Purification and properties of the Ascaris pyruvate dehydrogenase complex. , 1979, Biochimica et biophysica acta.

[21]  R. Komuniecki,et al.  Purification of lipoamide dehydrogenase from Ascaris muscle mitochondria and its relationship to NADH:NAD+ transhydrogenase activity. , 1979, Archives of biochemistry and biophysics.

[22]  P. Srere,et al.  Resolution of rat mitochondrial matrix proteins by two-dimensional polyacrylamide gel electrophoresis. , 1979, Journal of Biological Chemistry.

[23]  H. Beinert,et al.  A new iron-sulfur flavoprotein of the respiratory chain. A component of the fatty acid beta oxidation pathway. , 1977, The Journal of biological chemistry.

[24]  H. Saz,et al.  2-methylacetoacetate reductase and possible propionyl coenzyme A condensing enzyme activity in branched chain volatile fatty acid synthesis by Ascaris lumbricoides. , 1977, The Journal of biological chemistry.

[25]  R. E. Reeves,et al.  An energy-conserving pyruvate-to-acetate pathway in Entamoeba histolytica. Pyruvate synthase and a new acetate thiokinase. , 1977, The Journal of biological chemistry.

[26]  W. Seubert,et al.  On the mechanism of malonyl-CoA-independent fatty-acid synthesis. Different properties of the mitochondrial chain elongation and enoylCoA reductase in various tissues. , 1976, European journal of biochemistry.

[27]  H. Bossche Biochemistry of parasites and host-parasite relationships. , 1976 .

[28]  J. Barrett,et al.  Energy metabolism in developing Ascaris lumbricoides eggs. I. The glycolytic enzymes. , 1975, Developmental biology.

[29]  E. Soulsby,et al.  Development of Ascaris suum larvae from the third to fourth stage, in vitro. , 1974, International journal for parasitology.

[30]  J. Barrett,et al.  The redox state of the free nicotinamide-adenine dinucleotide couple in the cytoplasm and mitochondria of muscle tissue from Ascaris lumbricoides (Nematoda). , 1973, Comparative biochemistry and physiology. A, Comparative physiology.

[31]  R. W. Gracy,et al.  Studies on enzymes from parasitic helminths. I. Purification and physical properties of malic enzyme from the muscle tissue of Ascaris suum. , 1972, Biochimica et biophysica acta.

[32]  P. Engel,et al.  The purification and properties of butyryl-coenzyme A dehydrogenase from Peptostreptococcus elsdenii. , 1971, The Biochemical journal.

[33]  H. Saz,et al.  Anaerobic phosphorylation in Ascaris mitochondria and the effects of anthelmintics. , 1971, Comparative biochemistry and physiology. B, Comparative biochemistry.

[34]  C. Ward,et al.  Enzymes of β-oxidation and their function during development ofAscaris lumbricoides eggs , 1970 .

[35]  D. Fairbairn,et al.  BIOCHEMICAL ADAPTATION AND LOSS OF GENETIC CAPACITY IN HELMINTH PARASITES , 1970, Biological reviews of the Cambridge Philosophical Society.

[36]  F. G. Tromba,et al.  Morphogenesis and migration of Ascaris suum larvae developing to fourth stage in swine. , 1969, The Journal of parasitology.

[37]  S. R. Sylk Cytochrome c oxidase in migrating larvae of Ascaris lumbricoides var. suum. , 1969, Experimental parasitology.

[38]  H. Saz,et al.  Biochemical observations of Ascaris suum lung-stage larvae. , 1968, The Journal of parasitology.

[39]  L. P. Milligan,et al.  ELECTRON TRANSPORT IN PEPTOSTREPTOCOCCUS ELSDENII. , 1964, Biochimica et biophysica acta.

[40]  L. Costello,et al.  THE COMPARATIVE BIOCHEMISTRY OF DEVELOPING ASCARIS EGGS. II. CHANGES IN CYTOCHROME C OXIDASE ACTIVITY DURING EMBRYONATION. , 1963, Journal of cellular and comparative physiology.

[41]  L. Costello,et al.  THE COMPARATIVE BIOCHEMISTRY OF DEVELOPING ASCARIS EGGS. I. SUBSTRATE OXIDATION AND THE CYTOCHROME SYSTEM IN EMBRYONATED AND UNEMBRYONATED EGGS. , 1963, Archives of biochemistry and biophysics.

[42]  H. Saz,et al.  Pathway of formation of alpha-methylvalerate by Ascaris lumbricoides. , 1962, The Journal of biological chemistry.