Discontinuous Galerkin Methods for a Class of Nonvariational Problems
暂无分享,去创建一个
[1] Howard C. Elman,et al. Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .
[2] Omar Lakkis,et al. A least-squares Galerkin approach to gradient and Hessian recovery for nondivergence-form elliptic equations , 2021, IMA Journal of Numerical Analysis.
[3] Omar Lakkis,et al. A Finite Element Method for Second Order Nonvariational Elliptic Problems , 2010, SIAM J. Sci. Comput..
[4] A nonvariational finite element method for fully nonlinear elliptic problems , 2011 .
[5] Andreas Dedner,et al. A generic interface for parallel and adaptive scientific computing: Abstraction principles and the Dune-Fem module , 2018 .
[6] A. Dedner,et al. Python Bindings for the DUNE-FEM module , 2020 .
[7] Ellya L. Kawecki,et al. Convergence of Adaptive Discontinuous Galerkin and C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^0$$\end{documen , 2020, Foundations of Computational Mathematics.
[8] Susanne C. Brenner,et al. Virtual enriching operators , 2019, Calcolo.
[9] Xiaobing Feng,et al. Vanishing Moment Method and Moment Solutions for Fully Nonlinear Second Order Partial Differential Equations , 2009, J. Sci. Comput..
[10] Endre Süli,et al. Discontinuous Galerkin Finite Element Approximation of Nondivergence Form Elliptic Equations with Cordès Coefficients , 2012, SIAM J. Numer. Anal..
[11] Andreas Dedner,et al. A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE , 2008, Computing.
[12] C. Miranda. Sulle equazioni ellittiche del secondo ordine di tipo non variazionale, a coefficienti discontinui , 1963 .
[13] Dietmar Gallistl,et al. Numerical approximation of planar oblique derivative problems in nondivergence form , 2018, Math. Comput..
[14] J. Dompierre,et al. Numerical comparison of some Hessian recovery techniques , 2007 .
[15] Alexandre Ern,et al. Discrete functional analysis tools for Discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations , 2010, Math. Comput..
[16] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[17] A. Buffa,et al. Compact embeddings of broken Sobolev spaces and applications , 2009 .
[18] Xiaobing Feng,et al. Finite element methods for second order linear elliptic partial differential equations in non-divergence form , 2015, Math. Comput..
[19] Ellya L. Kawecki. A DGFEM for nondivergence form elliptic equations with Cordes coefficients on curved domains , 2017, Numerical Methods for Partial Differential Equations.
[20] Tristan Pryer,et al. Discontinuous Galerkin methods for the p-biharmonic equation from a discrete variational perspective , 2012, 1209.4002.
[21] Xiaobing Feng,et al. Interior Penalty Discontinuous Galerkin Methods for Second Order Linear Non-divergence Form Elliptic PDEs , 2016, Journal of Scientific Computing.
[22] Iain Smears,et al. On the Convergence of Finite Element Methods for Hamilton-Jacobi-Bellman Equations , 2011, SIAM J. Numer. Anal..
[23] Pedro Morin,et al. On Convex Functions and the Finite Element Method , 2008, SIAM J. Numer. Anal..
[24] D. Gilbarg,et al. Elliptic Partial Differential Equa-tions of Second Order , 1977 .
[25] Paul Houston,et al. An a posteriori error indicator for discontinuous Galerkin approximations of fourth-order elliptic problems , 2011 .
[26] Anders Logg,et al. Unified form language: A domain-specific language for weak formulations of partial differential equations , 2012, TOMS.
[27] Lin Mu,et al. A simple finite element method for non-divergence form elliptic equation , 2017 .
[28] J. Douglas,et al. Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .
[29] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[30] G. Barles,et al. Convergence of approximation schemes for fully nonlinear second order equations , 1991 .
[31] Andreas Dedner,et al. A generic interface for parallel and adaptive discretization schemes: abstraction principles and the Dune-Fem module , 2010, Computing.
[32] Andreas Dedner,et al. A generic grid interface for parallel and adaptive scientific computing. Part I: abstract framework , 2008, Computing.
[33] Ellya L. Kawecki,et al. Unified analysis of discontinuous Galerkin and C0-interior penalty finite element methods for Hamilton-Jacobi-Bellman and Isaacs equations , 2020, ArXiv.
[34] Alexandre Ern,et al. Discontinuous Galerkin approximation with discrete variational principle for the nonlinear Laplacian , 2008 .
[35] Klaus Böhmer,et al. On Finite Element Methods for Fully Nonlinear Elliptic Equations of Second Order , 2008, SIAM J. Numer. Anal..
[36] Adam M. Oberman,et al. Convergent Difference Schemes for Degenerate Elliptic and Parabolic Equations: Hamilton-Jacobi Equations and Free Boundary Problems , 2006, SIAM J. Numer. Anal..
[37] Andreas Dedner,et al. The Dune Python Module , 2018, ArXiv.
[38] Yuri V. Vassilevski,et al. On a discrete Hessian recovery for P 1 finite elements , 2002, J. Num. Math..
[39] Xiaobing Feng,et al. Mixed Finite Element Methods for the Fully Nonlinear Monge-Ampère Equation Based on the Vanishing Moment Method , 2007, SIAM J. Numer. Anal..
[40] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[41] Giorgio Talenti. Sopra una classe di equazioni ellittiche a coefficienti misurabili , 1965 .
[42] Heinz Otto Cordes,et al. Über die erste Randwertaufgabe bei quasilinearen Differentialgleichungen zweiter Ordnung in mehr als zwei Variablen , 1956 .
[43] Dietmar Gallistl,et al. Variational Formulation and Numerical Analysis of Linear Elliptic Equations in Nondivergence form with Cordes Coefficients , 2016, SIAM J. Numer. Anal..