Discontinuous Galerkin Methods for a Class of Nonvariational Problems

We extend the finite element method introduced by Lakkis and Pryer (SIAM J. Sci. Comput. 33(2): 786–801, 2011) to approximate the solution of second-order elliptic problems in nonvariational form to incorporate the discontinuous Galerkin (DG) framework. This is done by viewing the “finite element Hessian” as an auxiliary variable in the formulation. Representing the finite element Hessian in a discontinuous setting yields a linear system of the same size and having the same sparsity pattern of the compact DG methods for variational elliptic problems. Furthermore, the system matrix is very easy to assemble; thus, this approach greatly reduces the computational complexity of the discretisation compared to the continuous approach. We conduct a stability and consistency analysis making use of the unified framework set out in Arnold et al. (SIAM J. Numer. Anal. 39(5): 1749–1779, 2001/2002). We also give an a posteriori analysis of the method in the case where the problem has a strong solution. The analysis applies to any consistent representation of the finite element Hessian, and thus is applicable to the previous works making use of continuous Galerkin approximations. Numerical evidence is presented showing that the method works well also in a more general setting.

[1]  Howard C. Elman,et al.  Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .

[2]  Omar Lakkis,et al.  A least-squares Galerkin approach to gradient and Hessian recovery for nondivergence-form elliptic equations , 2021, IMA Journal of Numerical Analysis.

[3]  Omar Lakkis,et al.  A Finite Element Method for Second Order Nonvariational Elliptic Problems , 2010, SIAM J. Sci. Comput..

[4]  A nonvariational finite element method for fully nonlinear elliptic problems , 2011 .

[5]  Andreas Dedner,et al.  A generic interface for parallel and adaptive scientific computing: Abstraction principles and the Dune-Fem module , 2018 .

[6]  A. Dedner,et al.  Python Bindings for the DUNE-FEM module , 2020 .

[7]  Ellya L. Kawecki,et al.  Convergence of Adaptive Discontinuous Galerkin and C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^0$$\end{documen , 2020, Foundations of Computational Mathematics.

[8]  Susanne C. Brenner,et al.  Virtual enriching operators , 2019, Calcolo.

[9]  Xiaobing Feng,et al.  Vanishing Moment Method and Moment Solutions for Fully Nonlinear Second Order Partial Differential Equations , 2009, J. Sci. Comput..

[10]  Endre Süli,et al.  Discontinuous Galerkin Finite Element Approximation of Nondivergence Form Elliptic Equations with Cordès Coefficients , 2012, SIAM J. Numer. Anal..

[11]  Andreas Dedner,et al.  A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE , 2008, Computing.

[12]  C. Miranda Sulle equazioni ellittiche del secondo ordine di tipo non variazionale, a coefficienti discontinui , 1963 .

[13]  Dietmar Gallistl,et al.  Numerical approximation of planar oblique derivative problems in nondivergence form , 2018, Math. Comput..

[14]  J. Dompierre,et al.  Numerical comparison of some Hessian recovery techniques , 2007 .

[15]  Alexandre Ern,et al.  Discrete functional analysis tools for Discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations , 2010, Math. Comput..

[16]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[17]  A. Buffa,et al.  Compact embeddings of broken Sobolev spaces and applications , 2009 .

[18]  Xiaobing Feng,et al.  Finite element methods for second order linear elliptic partial differential equations in non-divergence form , 2015, Math. Comput..

[19]  Ellya L. Kawecki A DGFEM for nondivergence form elliptic equations with Cordes coefficients on curved domains , 2017, Numerical Methods for Partial Differential Equations.

[20]  Tristan Pryer,et al.  Discontinuous Galerkin methods for the p-biharmonic equation from a discrete variational perspective , 2012, 1209.4002.

[21]  Xiaobing Feng,et al.  Interior Penalty Discontinuous Galerkin Methods for Second Order Linear Non-divergence Form Elliptic PDEs , 2016, Journal of Scientific Computing.

[22]  Iain Smears,et al.  On the Convergence of Finite Element Methods for Hamilton-Jacobi-Bellman Equations , 2011, SIAM J. Numer. Anal..

[23]  Pedro Morin,et al.  On Convex Functions and the Finite Element Method , 2008, SIAM J. Numer. Anal..

[24]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[25]  Paul Houston,et al.  An a posteriori error indicator for discontinuous Galerkin approximations of fourth-order elliptic problems , 2011 .

[26]  Anders Logg,et al.  Unified form language: A domain-specific language for weak formulations of partial differential equations , 2012, TOMS.

[27]  Lin Mu,et al.  A simple finite element method for non-divergence form elliptic equation , 2017 .

[28]  J. Douglas,et al.  Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .

[29]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[30]  G. Barles,et al.  Convergence of approximation schemes for fully nonlinear second order equations , 1991 .

[31]  Andreas Dedner,et al.  A generic interface for parallel and adaptive discretization schemes: abstraction principles and the Dune-Fem module , 2010, Computing.

[32]  Andreas Dedner,et al.  A generic grid interface for parallel and adaptive scientific computing. Part I: abstract framework , 2008, Computing.

[33]  Ellya L. Kawecki,et al.  Unified analysis of discontinuous Galerkin and C0-interior penalty finite element methods for Hamilton-Jacobi-Bellman and Isaacs equations , 2020, ArXiv.

[34]  Alexandre Ern,et al.  Discontinuous Galerkin approximation with discrete variational principle for the nonlinear Laplacian , 2008 .

[35]  Klaus Böhmer,et al.  On Finite Element Methods for Fully Nonlinear Elliptic Equations of Second Order , 2008, SIAM J. Numer. Anal..

[36]  Adam M. Oberman,et al.  Convergent Difference Schemes for Degenerate Elliptic and Parabolic Equations: Hamilton-Jacobi Equations and Free Boundary Problems , 2006, SIAM J. Numer. Anal..

[37]  Andreas Dedner,et al.  The Dune Python Module , 2018, ArXiv.

[38]  Yuri V. Vassilevski,et al.  On a discrete Hessian recovery for P 1 finite elements , 2002, J. Num. Math..

[39]  Xiaobing Feng,et al.  Mixed Finite Element Methods for the Fully Nonlinear Monge-Ampère Equation Based on the Vanishing Moment Method , 2007, SIAM J. Numer. Anal..

[40]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[41]  Giorgio Talenti Sopra una classe di equazioni ellittiche a coefficienti misurabili , 1965 .

[42]  Heinz Otto Cordes,et al.  Über die erste Randwertaufgabe bei quasilinearen Differentialgleichungen zweiter Ordnung in mehr als zwei Variablen , 1956 .

[43]  Dietmar Gallistl,et al.  Variational Formulation and Numerical Analysis of Linear Elliptic Equations in Nondivergence form with Cordes Coefficients , 2016, SIAM J. Numer. Anal..