Mesoscale modeling of concrete: Geometry and numerics

Mesoscale analysis is a promising discipline for concrete mix design and damage prediction. Besides many other aspects, its success crucially depends on accurate modeling of the mesoscale geometry and efficient numerical analysis of high resolution, to both of which this article contributes. Mesoscale models of concrete include aggregates, cement stone and, optionally, interfacial transition zones. The present paper establishes transparent formulas for consistent numerical generation of aggregate sizes. Fast separation checks are applied to place ellipsoidal and in particular arbitrary shaped particles. The multigrid method enables efficient computation of very large heterogeneous mesoscale models. This is exemplified by linear finite element analysis of two-dimensional models. Corresponding results are confirmed by experiments and analytical models from literature. The influence of concrete mix parameters on effective elastic properties is studied.

[1]  D. J. Hannant,et al.  Discussion: The effect of aggregate concentration upon the strength and modulus of elasticity of concrete* , 1980 .

[2]  Leonard Eugene Dickson,et al.  Elementary Theory of Equations , 2008 .

[3]  Pietro Cornetti,et al.  The elastic problem for fractal media: basic theory and finite element formulation , 2004 .

[4]  Manolis Papadrakakis Parallel solution methods in computational mechanics , 1997 .

[5]  Wenping Wang,et al.  An algebraic condition for the separation of two ellipsoids , 2001, Comput. Aided Geom. Des..

[6]  M.R.A. van Vliet,et al.  Influence of microstructure of concrete on size/scale effects in tensile fracture , 2003 .

[7]  J. Wulf,et al.  Mehrphasige Finite Elemente in der Verformungs- und Versagensanalyse grob mehrphasiger Werkstoffe , 1995 .

[8]  Z. M. Wang,et al.  Mesoscopic study of concrete I: generation of random aggregate structure and finite element mesh , 1999 .

[9]  Edward J. Garboczi,et al.  An algorithm for computing the effective linear elastic properties of heterogeneous materials: Three-dimensional results for composites with equal phase poisson ratios , 1995 .

[10]  Z. M. Wang,et al.  Mesoscopic study of concrete II: nonlinear finite element analysis , 1999 .

[11]  Su-Seng Pang,et al.  Effective Young's modulus estimation of concrete , 1999 .

[12]  A. Wada,et al.  Three-dimensional nonlinear finite element analysis of the macroscopic compressive failure of concrete materials based on real digital image , 2000 .

[13]  J. Mier,et al.  Effect of particle structure on mode I fracture process in concrete , 2003 .

[14]  H.E.J.G. Schlangen,et al.  Experimental and numerical analysis of fracture processes in concrete : proefschrift , 1993 .

[15]  J. Mier,et al.  Simple lattice model for numerical simulation of fracture of concrete materials and structures , 1992 .

[16]  W. Hackbusch Iterative Lösung großer schwachbesetzter Gleichungssysteme , 1991 .

[17]  Joost C. Walraven,et al.  Aggregate interlock: A theoretical and experimental analysis , 1980 .

[18]  S. Eckardt,et al.  A geometrical inclusion-matrix model for the finite element analysis of concrete at multiple scales , 2003 .

[19]  T. Zohdi Computational optimization of the vortex manufacturing of advanced materials , 2001 .

[20]  J. Mier,et al.  Fracture mechanisms in particle composites: statistical aspects in lattice type analysis , 2002 .

[21]  V. Slowik,et al.  Computer simulation of fracture processes of concrete using mesolevel models of lattice structures , 2004 .

[22]  Nils-Erik Wiberg,et al.  Adaptive FE-Simulations In 3D Using Multigrid Solver , 2003 .

[23]  Louis A. Hageman,et al.  Iterative Solution of Large Linear Systems. , 1971 .

[24]  A. F. Stock,et al.  THE EFFECT OF AGGREGATE CONCENTRATION UPON THE STRENGTH AND MODULUS OF ELASTICITY OF CONCRETE , 1979 .

[25]  G Shakhmenko,et al.  CONCRETE MIX DESIGN AND OPTIMIZATION , 1998 .

[26]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[27]  Su-Seng Pang,et al.  Four-phase sphere modeling of effective bulk modulus of concrete , 1999 .

[28]  E. Garboczi Three-dimensional mathematical analysis of particle shape using X-ray tomography and spherical harmonics: Application to aggregates used in concrete , 2002 .

[29]  E. Ramm,et al.  From solids to granulates - Discrete element simulations of fracture and fragmentation processes in geomaterials , 2001 .

[30]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[31]  K. Bathe Finite Element Procedures , 1995 .

[32]  M. Tabbara,et al.  RANDOM PARTICLE MODEL FOR FRACTURE OF AGGREGATE OR FIBER COMPOSITES , 1990 .

[33]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.