EXPLICIT ERROR ESTIMATES FOR MIXED AND NONCONFORMING FINITE ELEMENTS

In this paper, we study the explicit expressions of the constants in the error estimates of the lowest order mixed and nonconforming flnite element methods. We start with an explicit relation between the error constant of the lowest order Raviart-Thomas interpolation error and the geometric characters of the triangle. This gives an explicit error constant of the lowest order mixed flnite element method. Furthermore, similar results can be extended to the nonconforming P1 scheme based on its close connection with the lowest order Raviart-Thomas method. Meanwhile, such explicit a priori error estimates can be used as computable error bounds, which are also consistent with the maximal angle condition for the optimal error estimates of mixed and nonconforming flnite element methods.

[1]  Fumio Kikuchi,et al.  Estimation of interpolation error constants for the P0 and P1 triangular finite elements , 2007 .

[2]  L. D. Marini An Inexpensive Method for the Evaluation of the Solution of the Lowest Order Raviart–Thomas Mixed Method , 1985 .

[3]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[4]  Weiming Cao,et al.  On the Error of Linear Interpolation and the Orientation, Aspect Ratio, and Internal Angles of a Triangle , 2005, SIAM J. Numer. Anal..

[5]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[6]  R. Lehmann Computable Error Bounds in the Finite-Element Method , 1986 .

[7]  M. Bebendorf A Note on the Poincaré Inequality for Convex Domains , 2003 .

[8]  R. E. Barnhill,et al.  A Comparison of Finite Element Error Bounds for Poisson's Equation , 1981 .

[9]  D. Arnold,et al.  Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .

[10]  P. Jamet Estimations d'erreur pour des éléments finis droits presque dégénérés , 1976 .

[11]  M. Krízek,et al.  On the maximum angle condition for linear tetrahedral elements , 1992 .

[12]  Peter Arbenz Computable Finite Element Error Bounds for Poisson's Equation , 1982 .

[13]  Serge Nicaise,et al.  On the Interpolation Error Estimates for Q1 Quadrilateral Finite Elements , 2008, SIAM J. Numer. Anal..

[14]  Howard C. Elman,et al.  Fast Nonsymmetric Iterations and Preconditioning for Navier-Stokes Equations , 1996, SIAM J. Sci. Comput..

[15]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[16]  Ja Gregory,et al.  Error bounds for linear interpolation on triangles , 1975 .

[17]  Robert E. Barnhill,et al.  Computable error bounds for finite element approximations to the Dirichlet problem , 1982 .

[18]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[19]  G. Stoyan Towards discrete velte decompositions and narrow bounds for inf-sup constants , 1999 .

[20]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[21]  Cornelius O. Horgan,et al.  On inequalities of Korn, Friedrichs and Babuška-Aziz , 1983 .

[22]  Maxim A. Olshanskii,et al.  On the domain geometry dependence of the LBB condition , 2000 .

[23]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[24]  P. G. Ciarlet,et al.  General lagrange and hermite interpolation in Rn with applications to finite element methods , 1972 .

[25]  Miloš Zlámal,et al.  On the finite element method , 1968 .

[26]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[27]  P. Raviart,et al.  Primal hybrid finite element methods for 2nd order elliptic equations , 1977 .

[28]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .