Credit Scoring and Default Risk Prediction: A Comparative Study between Discriminant Analysis & Logistic Regression

This paper aims to develop models for foreseeing default risk of small and medium enterprises (SMEs) for one Tunisian commercial bank using two different methodologies (logistic regression and discriminant analysis). We used a database that consists of 195 credit files granted to Tunisian SMEs which are divided into five sectors i°industry, agriculture, tourism, trade and servicesi± for a period from 2012 to 2014. The empirical results that we found support the idea that these two scoring techniques have a statistically significant power in predicting default risk of enterprises. Logistic discrimination classifies enterprises correctly in their original groups with a rate of 76.7% against 76.4% in case of linear discrimination giving so a slight superiority to the first method.

[1]  E. Deakin Discriminant Analysis Of Predictors Of Business Failure , 1972 .

[2]  W. Scott Frame,et al.  The Effect of Credit Scoring on Small-Business Lending , 2001 .

[3]  V. Brunel Gestion des risques et risque de credit , 2009 .

[4]  Michel Dietsch,et al.  Mesure et gestion du risque de crédit dans les institutions financières , 2003 .

[5]  Edward I. Altman,et al.  FINANCIAL RATIOS, DISCRIMINANT ANALYSIS AND THE PREDICTION OF CORPORATE BANKRUPTCY , 1968 .

[6]  William H. Beaver,et al.  Market Prices, Financial Ratios, And Prediction Of Failure , 1968 .

[7]  L. Ureche-Rangau,et al.  Corporate default analysis in Tunisia using credit scoring techniques , 2010 .

[8]  Gregory F. Udell,et al.  The Past, Present, and Probable Future for Community Banks , 2004 .

[9]  LA PREVENTION DU RISQUE DE DEFAUT DANS LES BANQUES TUNISIENNES. Analyse comparative entre les méthodes linéaires classiques et les méthodes de l'intelligence artificielle : les réseaux de neurones artificiels , 2010 .

[10]  A. Saunders Credit Risk Measurement: New Approaches to Value at Risk and Other Paradigms , 1999 .

[11]  Hamadi Matoussi,et al.  LA PREDICTION DE FAILLITE DES ENTREPRISES TUNISIENNES PAR LA REGRESSION LOGISTIQUE , 1999 .

[12]  E. Altman,et al.  ZETATM analysis A new model to identify bankruptcy risk of corporations , 1977 .

[13]  Accès au crédit et promotion des PME en Tunisie , 2009 .

[14]  Loretta J. Mester What's the point of credit scoring? , 1997 .

[15]  Jonathan N. Crook,et al.  Credit Scoring and Its Applications , 2002, SIAM monographs on mathematical modeling and computation.

[16]  Allen N. Berger,et al.  Credit scoring and the availability, price, and risk of small business credit , 2002 .

[17]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[18]  W. Beaver Financial Ratios As Predictors Of Failure , 1966 .

[19]  M. Bardos,et al.  Comparaison de l'analyse discriminante linéaire et des réseaux de neurones. Application à la détection de défaillance d'entreprises , 1997 .

[20]  Tufféry Stéphane Data mining et statistique décisionnelle , 2017 .

[21]  James A. Ohlson FINANCIAL RATIOS AND THE PROBABILISTIC PREDICTION OF BANKRUPTCY , 1980 .

[22]  Mireille Bardos Scoring sur données d'entreprises : instrument de diagnostic individuel et outil d'analyse de portefeuille d'une clientèle , 2008, Monde des Util. Anal. Données.

[23]  Ray H. Anderson The Credit Scoring Toolkit: Theory and Practice for Retail Credit Risk Management and Decision Automation , 2007 .

[24]  Carole Howorth,et al.  Working Capital Financing Preferences: The Case of Mauritian Manufacturing Small and Medium Sized Enterprises (SMEs) , 2012 .