Irregular spiking of pyramidal neurons organizes as scale-invariant neuronal avalanches in the awake state

Spontaneous fluctuations in neuronal activity emerge at many spatial and temporal scales in cortex. Population measures found these fluctuations to organize as scale-invariant neuronal avalanches, suggesting cortical dynamics to be critical. Macroscopic dynamics, though, depend on physiological states and are ambiguous as to their cellular composition, spatiotemporal origin, and contributions from synaptic input or action potential (AP) output. Here, we study spontaneous firing in pyramidal neurons (PNs) from rat superficial cortical layers in vivo and in vitro using 2-photon imaging. As the animal transitions from the anesthetized to awake state, spontaneous single neuron firing increases in irregularity and assembles into scale-invariant avalanches at the group level. In vitro spike avalanches emerged naturally yet required balanced excitation and inhibition. This demonstrates that neuronal avalanches are linked to the global physiological state of wakefulness and that cortical resting activity organizes as avalanches from firing of local PN groups to global population activity. DOI: http://dx.doi.org/10.7554/eLife.07224.001

[1]  T. E. Harris,et al.  The Theory of Branching Processes. , 1963 .

[2]  T. E. Harris,et al.  The Theory of Branching Processes. , 1963 .

[3]  H. L. Bryant,et al.  Spike initiation by transmembrane current: a white‐noise analysis. , 1976, The Journal of physiology.

[4]  M. V. Rossum,et al.  In Neural Computation , 2022 .

[5]  TJ Gawne,et al.  How independent are the messages carried by adjacent inferior temporal cortical neurons? , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  A Aertsen,et al.  Current Source Density Profiles of Optical Recording Maps: a New Approach to the Analysis of Spatio‐temporal Neural Activity Patterns , 1993, The European journal of neuroscience.

[7]  William R. Softky,et al.  The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  Dan-Mei Chen,et al.  Self-organized criticality in a cellular automaton model of pulse-coupled integrate-and-fire neurons , 1995 .

[9]  T. Sejnowski,et al.  Reliability of spike timing in neocortical neurons. , 1995, Science.

[10]  A. Grinvald,et al.  Dynamics of Ongoing Activity: Explanation of the Large Variability in Evoked Cortical Responses , 1996, Science.

[11]  H. Sompolinsky,et al.  Chaos in Neuronal Networks with Balanced Excitatory and Inhibitory Activity , 1996, Science.

[12]  C. Stevens,et al.  Input synchrony and the irregular firing of cortical neurons , 1998, Nature Neuroscience.

[13]  W. Newsome,et al.  The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding , 1998, The Journal of Neuroscience.

[14]  Shimon Marom,et al.  Interaction between Duration of Activity and Time Course of Recovery from Slow Inactivation in Mammalian Brain Na+Channels , 1998, The Journal of Neuroscience.

[15]  Nicolas Brunel,et al.  Dynamics of networks of randomly connected excitatory and inhibitory spiking neurons , 2000, Journal of Physiology-Paris.

[16]  Maria V. Sanchez-Vives,et al.  Cellular and network mechanisms of rhythmic recurrent activity in neocortex , 2000, Nature Neuroscience.

[17]  G A Cecchi,et al.  Noise in neurons is message dependent. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[18]  N. Nakatsuji,et al.  Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. , 2001, Developmental biology.

[19]  J. Sethna,et al.  Crackling noise , 2001, Nature.

[20]  K. Linkenkaer-Hansen,et al.  Long-Range Temporal Correlations and Scaling Behavior in Human Brain Oscillations , 2001, The Journal of Neuroscience.

[21]  J. Sethna,et al.  Crackling noise : Complex systems , 2001 .

[22]  J. M. Herrmann,et al.  Finite-size effects of avalanche dynamics. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  R. Yuste,et al.  Attractor dynamics of network UP states in the neocortex , 2003, Nature.

[24]  John M. Beggs,et al.  Neuronal Avalanches in Neocortical Circuits , 2003, The Journal of Neuroscience.

[25]  Nils Bertschinger,et al.  Real-Time Computation at the Edge of Chaos in Recurrent Neural Networks , 2004, Neural Computation.

[26]  A. Miyawaki,et al.  Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Yuji Ikegaya,et al.  Synfire Chains and Cortical Songs: Temporal Modules of Cortical Activity , 2004, Science.

[28]  John M. Beggs,et al.  Behavioral / Systems / Cognitive Neuronal Avalanches Are Diverse and Precise Activity Patterns That Are Stable for Many Hours in Cortical Slice Cultures , 2004 .

[29]  M. Greicius,et al.  Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI , 2004, Proc. Natl. Acad. Sci. USA.

[30]  Tetsuichiro Saito In vivo electroporation in the embryonic mouse central nervous system , 2006, Nature Protocols.

[31]  D. Plenz,et al.  Inverted-U Profile of Dopamine–NMDA-Mediated Spontaneous Avalanche Recurrence in Superficial Layers of Rat Prefrontal Cortex , 2006, The Journal of Neuroscience.

[32]  A. Pouget,et al.  Neural correlations, population coding and computation , 2006, Nature Reviews Neuroscience.

[33]  O. Kinouchi,et al.  Optimal dynamical range of excitable networks at criticality , 2006, q-bio/0601037.

[34]  D. Plenz,et al.  The organizing principles of neuronal avalanches: cell assemblies in the cortex? , 2007, Trends in Neurosciences.

[35]  David S. Greenberg,et al.  Spatial Organization of Neuronal Population Responses in Layer 2/3 of Rat Barrel Cortex , 2007, The Journal of Neuroscience.

[36]  V. Torre,et al.  On the Dynamics of the Spontaneous Activity in Neuronal Networks , 2007, PloS one.

[37]  M. Fox,et al.  Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging , 2007, Nature Reviews Neuroscience.

[38]  J. M. Herrmann,et al.  Dynamical synapses causing self-organized criticality in neural networks , 2007, 0712.1003.

[39]  K. Svoboda,et al.  The Functional Microarchitecture of the Mouse Barrel Cortex , 2007, Neuroscience Research.

[40]  S. Kauffman,et al.  Measures for information propagation in Boolean networks , 2007 .

[41]  Viola Priesemann,et al.  Subsampling effects in neuronal avalanche distributions recorded in vivo , 2009, BMC Neuroscience.

[42]  A. Aertsen,et al.  Conditions for Propagating Synchronous Spiking and Asynchronous Firing Rates in a Cortical Network Model , 2008, The Journal of Neuroscience.

[43]  David S. Greenberg,et al.  Population imaging of ongoing neuronal activity in the visual cortex of awake rats , 2008, Nature Neuroscience.

[44]  D. Plenz,et al.  Homeostasis of neuronal avalanches during postnatal cortex development in vitro , 2008, Journal of Neuroscience Methods.

[45]  Damian J. Wallace,et al.  Single-spike detection in vitro and in vivo with a genetic Ca2+ sensor , 2008, Nature Methods.

[46]  L. L. Bologna,et al.  Self-organization and neuronal avalanches in networks of dissociated cortical neurons , 2008, Neuroscience.

[47]  J. Poulet,et al.  Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice , 2008, Nature.

[48]  Ilya Shmulevich,et al.  Critical networks exhibit maximal information diversity in structure-dynamics relationships. , 2008, Physical review letters.

[49]  D. Plenz,et al.  Neuronal avalanches organize as nested theta- and beta/gamma-oscillations during development of cortical layer 2/3 , 2008, Proceedings of the National Academy of Sciences.

[50]  Biyu J. He,et al.  Electrophysiological correlates of the brain's intrinsic large-scale functional architecture , 2008, Proceedings of the National Academy of Sciences.

[51]  Takeshi Kaneko,et al.  Recurrent Infomax Generates Cell Assemblies, Neuronal Avalanches, and Simple Cell-Like Selectivity , 2009, Neural Computation.

[52]  Woodrow L. Shew,et al.  Neuronal Avalanches Imply Maximum Dynamic Range in Cortical Networks at Criticality , 2009, The Journal of Neuroscience.

[53]  L. F. Abbott,et al.  Generating Coherent Patterns of Activity from Chaotic Neural Networks , 2009, Neuron.

[54]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[55]  Sreekanth H. Chalasani,et al.  Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators , 2009, Nature Methods.

[56]  K. Harris,et al.  Spontaneous Events Outline the Realm of Possible Sensory Responses in Neocortical Populations , 2009, Neuron.

[57]  J. M. Herrmann,et al.  Phase transitions towards criticality in a neural system with adaptive interactions. , 2009, Physical review letters.

[58]  D. Plenz,et al.  Spontaneous cortical activity in awake monkeys composed of neuronal avalanches , 2009, Proceedings of the National Academy of Sciences.

[59]  X. Illa,et al.  The effect of thresholding on temporal avalanche statistics , 2008, 0810.0948.

[60]  Rafael Yuste,et al.  Fast nonnegative deconvolution for spike train inference from population calcium imaging. , 2009, Journal of neurophysiology.

[61]  D. Chialvo Emergent complex neural dynamics , 2010, 1010.2530.

[62]  Stefan Mihalas,et al.  Self-organized criticality occurs in non-conservative neuronal networks during Up states , 2010, Nature physics.

[63]  K. Svoboda,et al.  Neural Activity in Barrel Cortex Underlying Vibrissa-Based Object Localization in Mice , 2010, Neuron.

[64]  M. A. Muñoz,et al.  Self-organization without conservation: are neuronal avalanches generically critical? , 2010, 1001.3256.

[65]  J. Touboul,et al.  Can Power-Law Scaling and Neuronal Avalanches Arise from Stochastic Dynamics? , 2009, PloS one.

[66]  M. Larkum,et al.  Frontiers in Neural Circuits Neural Circuits Methods Article , 2022 .

[67]  Marc Benayoun,et al.  Avalanches in a Stochastic Model of Spiking Neurons , 2010, PLoS Comput. Biol..

[68]  Andrew M. Clark,et al.  Stimulus onset quenches neural variability: a widespread cortical phenomenon , 2010, Nature Neuroscience.

[69]  Florentin Wörgötter,et al.  Self-Organized Criticality in Developing Neuronal Networks , 2010, PLoS Comput. Biol..

[70]  J. Schiller,et al.  Dynamics of Excitability over Extended Timescales in Cultured Cortical Neurons , 2010, The Journal of Neuroscience.

[71]  H. S. Meyer,et al.  Number and Laminar Distribution of Neurons in a Thalamocortical Projection Column of Rat Vibrissal Cortex , 2010, Cerebral cortex.

[72]  M. Nicolelis,et al.  Spike Avalanches Exhibit Universal Dynamics across the Sleep-Wake Cycle , 2010, PloS one.

[73]  Alexander S. Ecker,et al.  Decorrelated Neuronal Firing in Cortical Microcircuits , 2010, Science.

[74]  M. London,et al.  Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex , 2010, Nature.

[75]  Karel Svoboda,et al.  Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice , 2010, Nature.

[76]  P. Dayan,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S9 References the Asynchronous State in Cortical Circuits , 2022 .

[77]  L. de Arcangelis,et al.  Learning as a phenomenon occurring in a critical state , 2010, Proceedings of the National Academy of Sciences.

[78]  J. Sethna,et al.  Universality beyond power laws and the average avalanche shape , 2011 .

[79]  Shan Yu,et al.  Higher-Order Interactions Characterized in Cortical Activity , 2011, The Journal of Neuroscience.

[80]  Changsong Zhou,et al.  Sustained Activity in Hierarchical Modular Neural Networks: Self-Organized Criticality and Oscillations , 2010, Front. Comput. Neurosci..

[81]  Avner Wallach,et al.  Relational Dynamics in Perception: Impacts on Trial-to-trial Variation , 2011, Front. Comput. Neurosci..

[82]  Olaf Sporns,et al.  Neurobiologically Realistic Determinants of Self-Organized Criticality in Networks of Spiking Neurons , 2011, PLoS Comput. Biol..

[83]  Takeharu Nagai,et al.  Quantitative Comparison of Genetically Encoded Ca2+ Indicators in Cortical Pyramidal Cells and Cerebellar Purkinje Cells , 2011, Front. Cell. Neurosci..

[84]  Woodrow L. Shew,et al.  Information Capacity and Transmission Are Maximized in Balanced Cortical Networks with Neuronal Avalanches , 2010, The Journal of Neuroscience.

[85]  Morgane M. Roth,et al.  Representation of visual scenes by local neuronal populations in layer 2/3 of mouse visual cortex , 2011, Front. Neural Circuits.

[86]  Andreas Klaus,et al.  Statistical Analyses Support Power Law Distributions Found in Neuronal Avalanches , 2011, PloS one.

[87]  D. Plenz Neuronal avalanches and coherence potentials , 2012 .

[88]  Dante R. Chialvo,et al.  What kind of noise is brain noise: anomalous scaling behavior of the resting brain activity fluctuations , 2010, Front. Physio..

[89]  W. Singer,et al.  Orientation selectivity and noise correlation in awake monkey area V1 are modulated by the gamma cycle , 2012, Proceedings of the National Academy of Sciences.

[90]  Zach D. Haga,et al.  Avalanche Analysis from Multielectrode Ensemble Recordings in Cat, Monkey, and Human Cerebral Cortex during Wakefulness and Sleep , 2012, Front. Physio..

[91]  John M. Beggs,et al.  Being Critical of Criticality in the Brain , 2012, Front. Physio..

[92]  A. Litwin-Kumar,et al.  Slow dynamics and high variability in balanced cortical networks with clustered connections , 2012, Nature Neuroscience.

[93]  M. Magnasco,et al.  Self-Regulated Dynamical Criticality in Human ECoG , 2012, Front. Integr. Neurosci..

[94]  John M. Beggs,et al.  Universal critical dynamics in high resolution neuronal avalanche data. , 2012, Physical review letters.

[95]  F. Helmchen,et al.  Reorganization of cortical population activity imaged throughout long-term sensory deprivation , 2012, Nature Neuroscience.

[96]  Pablo Balenzuela,et al.  Criticality in Large-Scale Brain fMRI Dynamics Unveiled by a Novel Point Process Analysis , 2012, Front. Physio..

[97]  Alison L. Barth,et al.  Experimental evidence for sparse firing in the neocortex , 2012, Trends in Neurosciences.

[98]  Woodrow L. Shew,et al.  Maximal Variability of Phase Synchrony in Cortical Networks with Neuronal Avalanches , 2012, The Journal of Neuroscience.

[99]  K. Linkenkaer-Hansen,et al.  Critical-State Dynamics of Avalanches and Oscillations Jointly Emerge from Balanced Excitation/Inhibition in Neuronal Networks , 2012, The Journal of Neuroscience.

[100]  D. Plenz,et al.  Balance between excitation and inhibition controls the temporal organization of neuronal avalanches. , 2012, Physical review letters.

[101]  Jean-Philippe Thivierge,et al.  Extracting functionally feedforward networks from a population of spiking neurons , 2012, Front. Comput. Neurosci..

[102]  Woodrow L. Shew,et al.  The Functional Benefits of Criticality in the Cortex , 2013, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[103]  D. Plenz,et al.  Neuronal Avalanches in the Resting MEG of the Human Brain , 2012, The Journal of Neuroscience.

[104]  Shimon Marom,et al.  Self-organized criticality in single-neuron excitability. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[105]  Dante R Chialvo,et al.  Brain organization into resting state networks emerges at criticality on a model of the human connectome. , 2012, Physical review letters.

[106]  Eric J Friedman,et al.  Hierarchical networks, power laws, and neuronal avalanches. , 2013, Chaos.

[107]  O. Shriki,et al.  Fading Signatures of Critical Brain Dynamics during Sustained Wakefulness in Humans , 2013, The Journal of Neuroscience.

[108]  Viola Priesemann,et al.  Neuronal Avalanches Differ from Wakefulness to Deep Sleep – Evidence from Intracranial Depth Recordings in Humans , 2013, PLoS Comput. Biol..

[109]  K. Linkenkaer-Hansen,et al.  Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws , 2013, Proceedings of the National Academy of Sciences.

[110]  M. A. Muñoz,et al.  Griffiths phases and the stretching of criticality in brain networks , 2013, Nature Communications.

[111]  Jochen Triesch,et al.  Spike avalanches in vivo suggest a driven, slightly subcritical brain state , 2014, Front. Syst. Neurosci..

[112]  Srdjan Ostojic,et al.  Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons , 2014, Nature Neuroscience.

[113]  D. Marković,et al.  Power laws and Self-Organized Criticality in Theory and Nature , 2013, 1310.5527.

[114]  Woodrow L. Shew,et al.  Voltage Imaging of Waking Mouse Cortex Reveals Emergence of Critical Neuronal Dynamics , 2014, The Journal of Neuroscience.

[115]  R. Yuste,et al.  Visual stimuli recruit intrinsically generated cortical ensembles , 2014, Proceedings of the National Academy of Sciences.

[116]  Andreas Klaus,et al.  Scale-Invariant Neuronal Avalanche Dynamics and the Cut-Off in Size Distributions , 2014, PloS one.

[117]  D. Plenz,et al.  On the temporal organization of neuronal avalanches , 2014, Front. Syst. Neurosci..

[118]  Nergis Tomen,et al.  Marginally subcritical dynamics explain enhanced stimulus discriminability under attention , 2014, Front. Syst. Neurosci..

[119]  Mario Pannunzi,et al.  The Influence of Spatiotemporal Structure of Noisy Stimuli in Decision Making , 2014, PLoS Comput. Biol..

[120]  M. Copelli,et al.  Undersampled Critical Branching Processes on Small-World and Random Networks Fail to Reproduce the Statistics of Spike Avalanches , 2014, PloS one.

[121]  Denis Cousineau,et al.  Maximum likelihood estimators for truncated and censored power-law distributions show how neuronal avalanches may be misevaluated. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[122]  D. Plenz,et al.  Criticality in neural systems , 2014 .

[123]  王亚周 Involvement of endoplasmic reticulum stress in the necroptosis ofmicroglia/macrophages after spinal cord injury. , 2015 .

[124]  Dietmar Plenz,et al.  Critical Slowing Down Governs the Transition to Neuron Spiking , 2015, PLoS Comput. Biol..

[125]  Narayan Srinivasa,et al.  Synaptic Plasticity Enables Adaptive Self-Tuning Critical Networks , 2015, PLoS Comput. Biol..