Dynamic Simulation of Hybrid-Driven Planar Five-Bar Parallel Mechanism Based on SimMechanics and Tracking Control

This paper investigates dynamic simulation and trajectory tracking control of hybrid-driven planar five-bar parallel mechanism (HPPM). To begin with, a simulation model of dynamics based on MATLAB/SimMechanics is established. Then, traditional PD control and closed loop PD-type iterative learning control of the HPPM are designed. At the end, the simulation based on SimMechanics is carried out, which acquires angular, angular velocity, angular acceleration of two driving links and constraint reaction of kinematic pairs at any time. In addition, the performance of the closed loop PD-type iterative learning control is compared with that of the traditional PD controller through simulations of the HPPM in the presence of the model external disturbances. The simulation results indicate that a perfect trajectory tracking of end-effector of the HPPM is achieved by the closed loop PD-type iterative learning controller.