Bang-bang property of time optimal controls of semilinear parabolic equation

The bang-bang property of time optimal controls for a semilinear parabolic equation, with homogeneous Dirichlet boundary condition and distributed controls acting on an open subset of the domain is established. This relies on an observability estimate from a measurable set in time for a linear parabolic equation, with potential depending on both space and time variables. The proof of the bang-bang property relies on a Kakutani fixed point argument.

[1]  Karl Kunisch,et al.  TIME OPTIMAL CONTROL OF THE HEAT EQUATION WITH POINTWISE CONTROL CONSTRAINTS , 2013 .

[2]  Karl Kunisch,et al.  The bang-bang property of time optimal controls for the Burgers equation , 2014 .

[3]  Lijuan Wang,et al.  Bang-bang property for time optimal control of semilinear heat equation , 2014 .

[4]  Lijuan Wang,et al.  The Bang-Bang principle of time optimal controls for the heat equation with internal controls , 2007, Syst. Control. Lett..

[5]  H. O. Fattorini,et al.  Time-Optimal Control of Solutions of Operational Differenital Equations , 1964 .

[6]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[7]  Viorel Barbu The time optimal control of Navier—Stokes equations , 1997 .

[8]  Gengsheng Wang,et al.  Linfinity-Null Controllability for the Heat Equation and Its Consequences for the Time Optimal Control Problem , 2008, SIAM J. Control. Optim..

[9]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[10]  Lijuan Wang,et al.  The Optimal Time Control of A Phase-Field System , 2003, SIAM J. Control. Optim..

[11]  Viorel Barbu,et al.  Analysis and control of nonlinear infinite dimensional systems , 1993 .

[12]  T. Seidman,et al.  An Abstract Bang-Bang Principle and Time-Optimal Boundary Control of the Heat Equation , 1997 .

[13]  H. O. Fattorini,et al.  Infinite dimensional linear control systems : the time optimal and norm optimal problems , 2005 .

[14]  Karl Kunisch,et al.  Time optimal controls of the linear Fitzhugh–Nagumo equation with pointwise control constraints , 2012, Journal of mathematical analysis and applications.