Nondegenerate internal squeezing: An all-optical, loss-resistant quantum technique for gravitational-wave detection

The detection of kilohertz-band gravitational waves promises discoveries in astrophysics, exotic matter, and cosmology. To improve the kilohertz quantum noise–limited sensitivity of interferometric gravitational-wave detectors, we investigate nondegenerate internal squeezing: optical parametric oscillation inside the signal-recycling cavity with distinct signal-mode and idler-mode frequencies. We use an analytic Hamiltonian model to show that this stable, all-optical technique is tolerant to decoherence from optical detection loss and that it, with its optimal readout scheme, is feasible for broadband sensitivity enhancement.

[1]  H. Miao,et al.  A Broadband Signal Recycling Scheme for Approaching the Quantum Limit from Optical Losses , 2021, Galaxies.

[2]  S. Vitale The first 5 years of gravitational-wave astrophysics , 2020, Science.

[3]  H. Pan,et al.  Cat-flap micro-pendulum for low noise optomechanics , 2020, Journal of Physics D: Applied Physics.

[4]  B. A. Boom,et al.  Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2020, Living reviews in relativity.

[5]  V. J. Hamedan,et al.  Neutron Star Extreme Matter Observatory: A kilohertz-band gravitational-wave detector in the global network , 2020, Publications of the Astronomical Society of Australia.

[6]  David E. McClelland,et al.  Generation and control of frequency-dependent squeezing via Einstein–Podolsky–Rosen entanglement , 2020 .

[7]  N. Kijbunchoo,et al.  Quantum enhanced kHz gravitational wave detector with internal squeezing , 2020, Classical and Quantum Gravity.

[8]  M. Fejer,et al.  A cryogenic silicon interferometer for gravitational-wave detection , 2020, Classical and Quantum Gravity.

[9]  C. Broeck,et al.  Science case for the Einstein telescope , 2019, Journal of Cosmology and Astroparticle Physics.

[10]  Yiqiu Ma,et al.  Quantum expander for gravitational-wave observatories , 2019, Light: Science & Applications.

[11]  Haixing Miao,et al.  Advanced quantum techniques for future gravitational-wave detectors , 2019, Living Reviews in Relativity.

[12]  Lisa Barsotti,et al.  Squeezed vacuum states of light for gravitational wave detectors , 2018, Reports on progress in physics. Physical Society.

[13]  Y. Arai,et al.  KAGRA: 2.5 generation interferometric gravitational wave detector , 2018, Nature Astronomy.

[14]  A. Schliesser,et al.  Continuous force and displacement measurement below the standard quantum limit , 2018, Nature Physics.

[15]  R. Cai,et al.  The Gravitational-Wave Physics , 2017, 1703.00187.

[16]  Chunnong Zhao,et al.  Proposal for gravitational-wave detection beyond the standard quantum limit through EPR entanglement , 2016, Nature Physics.

[17]  D. Marsh,et al.  Axion Cosmology , 2015, 1510.07633.

[18]  Travis E. Oliphant,et al.  Guide to NumPy , 2015 .

[19]  S. Klimenko,et al.  Advanced LIGO , 2014, 1411.4547.

[20]  Katherine L. Dooley,et al.  Status of GEO 600 , 2014, 1411.6588.

[21]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[22]  C. Moore,et al.  Gravitational-wave sensitivity curves , 2014, 1408.0740.

[23]  The Ligo Scientific Collaboration Enhancing the sensitivity of the LIGO gravitational wave detector by using squeezed states of light , 2013, 1310.0383.

[24]  F. Khalili,et al.  Quantum Measurement Theory in Gravitational-Wave Detectors , 2012, Living Reviews in Relativity.

[25]  S. Hild Beyond the second generation of laser-interferometric gravitational wave observatories , 2011, 1111.6277.

[26]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[27]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[28]  Magda Osman,et al.  Control Systems Engineering , 2010 .

[29]  A. Freise,et al.  Interferometer Techniques for Gravitational-Wave Detection , 2009, Living reviews in relativity.

[30]  Michael P. Rogers Python Tutorial , 2009 .

[31]  Eric Poisson,et al.  Gravitational Waves, Volume 1: Theory and Experiments , 2008 .

[32]  Christian D. Ott,et al.  The gravitational-wave signature of core-collapse supernovae , 2008, 0809.0695.

[33]  R. Lathe Phd by thesis , 1988, Nature.

[34]  W. Press,et al.  Gravitational waves. , 1980, Science.