Nondegenerate internal squeezing: An all-optical, loss-resistant quantum technique for gravitational-wave detection
暂无分享,去创建一个
[1] H. Miao,et al. A Broadband Signal Recycling Scheme for Approaching the Quantum Limit from Optical Losses , 2021, Galaxies.
[2] S. Vitale. The first 5 years of gravitational-wave astrophysics , 2020, Science.
[3] H. Pan,et al. Cat-flap micro-pendulum for low noise optomechanics , 2020, Journal of Physics D: Applied Physics.
[4] B. A. Boom,et al. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2020, Living reviews in relativity.
[5] V. J. Hamedan,et al. Neutron Star Extreme Matter Observatory: A kilohertz-band gravitational-wave detector in the global network , 2020, Publications of the Astronomical Society of Australia.
[6] David E. McClelland,et al. Generation and control of frequency-dependent squeezing via Einstein–Podolsky–Rosen entanglement , 2020 .
[7] N. Kijbunchoo,et al. Quantum enhanced kHz gravitational wave detector with internal squeezing , 2020, Classical and Quantum Gravity.
[8] M. Fejer,et al. A cryogenic silicon interferometer for gravitational-wave detection , 2020, Classical and Quantum Gravity.
[9] C. Broeck,et al. Science case for the Einstein telescope , 2019, Journal of Cosmology and Astroparticle Physics.
[10] Yiqiu Ma,et al. Quantum expander for gravitational-wave observatories , 2019, Light: Science & Applications.
[11] Haixing Miao,et al. Advanced quantum techniques for future gravitational-wave detectors , 2019, Living Reviews in Relativity.
[12] Lisa Barsotti,et al. Squeezed vacuum states of light for gravitational wave detectors , 2018, Reports on progress in physics. Physical Society.
[13] Y. Arai,et al. KAGRA: 2.5 generation interferometric gravitational wave detector , 2018, Nature Astronomy.
[14] A. Schliesser,et al. Continuous force and displacement measurement below the standard quantum limit , 2018, Nature Physics.
[15] R. Cai,et al. The Gravitational-Wave Physics , 2017, 1703.00187.
[16] Chunnong Zhao,et al. Proposal for gravitational-wave detection beyond the standard quantum limit through EPR entanglement , 2016, Nature Physics.
[17] D. Marsh,et al. Axion Cosmology , 2015, 1510.07633.
[18] Travis E. Oliphant,et al. Guide to NumPy , 2015 .
[19] S. Klimenko,et al. Advanced LIGO , 2014, 1411.4547.
[20] Katherine L. Dooley,et al. Status of GEO 600 , 2014, 1411.6588.
[21] C. Broeck,et al. Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.
[22] C. Moore,et al. Gravitational-wave sensitivity curves , 2014, 1408.0740.
[23] The Ligo Scientific Collaboration. Enhancing the sensitivity of the LIGO gravitational wave detector by using squeezed states of light , 2013, 1310.0383.
[24] F. Khalili,et al. Quantum Measurement Theory in Gravitational-Wave Detectors , 2012, Living Reviews in Relativity.
[25] S. Hild. Beyond the second generation of laser-interferometric gravitational wave observatories , 2011, 1111.6277.
[26] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[27] Maira Amezcua,et al. Quantum Optics , 2012 .
[28] Magda Osman,et al. Control Systems Engineering , 2010 .
[29] A. Freise,et al. Interferometer Techniques for Gravitational-Wave Detection , 2009, Living reviews in relativity.
[30] Michael P. Rogers. Python Tutorial , 2009 .
[31] Eric Poisson,et al. Gravitational Waves, Volume 1: Theory and Experiments , 2008 .
[32] Christian D. Ott,et al. The gravitational-wave signature of core-collapse supernovae , 2008, 0809.0695.
[33] R. Lathe. Phd by thesis , 1988, Nature.
[34] W. Press,et al. Gravitational waves. , 1980, Science.