Tracing the Evolution of Dust Obscured Star Formation and Accretion Back to the Reionisation Epoch with SPICA

Abstract Our current knowledge of star formation and accretion luminosity at high redshift (z > 3–4), as well as the possible connections between them, relies mostly on observations in the rest-frame ultraviolet, which are strongly affected by dust obscuration. Due to the lack of sensitivity of past and current infrared instrumentation, so far it has not been possible to get a glimpse into the early phases of the dust-obscured Universe. Among the next generation of infrared observatories, SPICA, observing in the 12–350 µm range, will be the only facility that can enable us to trace the evolution of the obscured star-formation rate and black-hole accretion rate densities over cosmic time, from the peak of their activity back to the reionisation epoch (i.e., 3 < z ≲ 6–7), where its predecessors had severe limitations. Here, we discuss the potential of photometric surveys performed with the SPICA mid-infrared instrument, enabled by the very low level of impact of dust obscuration in a band centred at 34 µm. These unique unbiased photometric surveys that SPICA will perform will fully characterise the evolution of AGNs and star-forming galaxies after reionisation.

[1]  B. Altieri,et al.  A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34 , 2013, Nature.

[2]  G. Helou,et al.  The Infrared Luminosity Function of Galaxies at Redshifts z = 1 and z ~ 2 in the GOODS Fields , 2007, astro-ph/0701283.

[3]  R. Ellis,et al.  Dust in the Reionization Era: ALMA Observations of a z = 8.38 Gravitationally Lensed Galaxy , 2017, 1703.02039.

[4]  J. Dunlop,et al.  High-redshift star formation in the Hubble Deep Field revealed by a submillimetre-wavelength survey , 1998, Nature.

[5]  L. Danese,et al.  Discrete source contributions to small-scale anisotropies of the microwave background , 1989 .

[6]  Andrew M. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[7]  Stefano Cristiani,et al.  On the relative Contribution of high-redshift Galaxies and Active Galactic Nuclei to Reionization , 2012, 1206.5810.

[8]  H Germany,et al.  On the evolution of the cosmic ionizing background , 2013, 1312.0615.

[9]  M. Rowan-Robinson,et al.  Dusty discs in active galactic nuclei , 1995 .

[10]  G. Lagache,et al.  Predictions for Cosmological Infrared Surveys from Space with the Multiband Imaging Photometer for SIRTF , 2002, astro-ph/0211312.

[11]  K. Souccar,et al.  Early Science with the Large Millimeter Telescope: CO and [C ii] Emission in the z = 4.3 AzTEC J095942.9+022938 (COSMOS AzTEC-1) , 2015, 1508.05425.

[12]  L. Testi,et al.  Revolution in astronomy with ALMA : the third year : proceedings of a conference held at the Tokyo International Forum, Tokyo, Japan, 8-11 December 2014 , 2015 .

[13]  M. Malkan,et al.  Infrared line diagnostics of active galactic nuclei , 1992 .

[14]  S. White,et al.  Galaxy formation in WMAP1 and WMAP7 cosmologies , 2012, 1206.0052.

[15]  G. Rieke,et al.  The Stellar Mass Assembly of Galaxies from z = 0 to z = 4: Analysis of a Sample Selected in the Rest-Frame Near-Infrared with Spitzer , 2007, 0709.1354.

[16]  S. Wuyts,et al.  THE EVOLUTION OF THE STELLAR MASS FUNCTION OF GALAXIES FROM z = 4.0 AND THE FIRST COMPREHENSIVE ANALYSIS OF ITS UNCERTAINTIES: EVIDENCE FOR MASS-DEPENDENT EVOLUTION , 2008, 0811.1773.

[17]  O. Ilbert,et al.  HerMES: dust attenuation and star formation activity in ultraviolet-selected samples from z ∼ 4 to ∼ 1.5 , 2013, 1310.3227.

[18]  K. Schawinski,et al.  The Hot and Energetic Universe: The formation and growth of the earliest supermassive black holes , 2013, 1306.2325.

[19]  Kate Isaak,et al.  FAR-IR/SUBMILLIMETER SPECTROSCOPIC COSMOLOGICAL SURVEYS: PREDICTIONS OF INFRARED LINE LUMINOSITY FUNCTIONS FOR z < 4 GALAXIES , 2011, 1110.4837.

[20]  F. Fontanot,et al.  Strong Stellar-driven Outflows Shape the Evolution of Galaxies at Cosmic Dawn , 2017, 1703.02983.

[21]  A. Merloni,et al.  Measuring the kinetic power of active galactic nuclei in the radio mode , 2007, 0707.3356.

[22]  Z. Cai,et al.  Exploring the relationship between black hole accretion and star formation with blind mid-/far-infrared spectroscopic surveys , 2014, 1408.3234.

[23]  R. Bouwens,et al.  REIONIZATION AFTER PLANCK: THE DERIVED GROWTH OF THE COSMIC IONIZING EMISSIVITY NOW MATCHES THE GROWTH OF THE GALAXY UV LUMINOSITY DENSITY , 2015, 1503.08228.

[24]  S. E. Persson,et al.  EXPLORING THE z = 3–4 MASSIVE GALAXY POPULATION WITH ZFOURGE: THE PREVALENCE OF DUSTY AND QUIESCENT GALAXIES , 2014, 1405.1048.

[25]  D. Elbaz,et al.  TWO BRIGHT SUBMILLIMETER GALAXIES IN A z = 4.05 PROTOCLUSTER IN GOODS-NORTH, AND ACCURATE RADIO-INFRARED PHOTOMETRIC REDSHIFTS , 2008, 0810.3108.

[26]  C. Megan Urry,et al.  THE SPACE DENSITY OF COMPTON-THICK ACTIVE GALACTIC NUCLEUS AND THE X-RAY BACKGROUND , 2009, 0902.0608.

[27]  T. Treu,et al.  Cosmic Evolution of Black Holes and Spheroids. III. The MBH-σ* Relation in the Last Six Billion Years , 2008, 0804.0235.

[28]  S. Lord,et al.  Nebular properties from far-infrared spectrosopy , 1994 .

[29]  A. Franceschini,et al.  Smooth and clumpy dust distributions in AGN: a direct comparison of two commonly explored infrared emission models , 2012, 1207.2668.

[30]  Christopher D. Martin,et al.  Spitzer View on the Evolution of Star-forming Galaxies from z = 0 to z ~ 3 , 2005, astro-ph/0505101.

[31]  D. Lutz,et al.  Far-Infrared Surveys of Galaxy Evolution , 2014, 1403.3334.

[32]  S. Maddox,et al.  The Herschel ATLAS , 2009, 0910.4279.

[33]  O. Ilbert,et al.  ISM MASSES AND THE STAR FORMATION LAW AT Z = 1 TO 6: ALMA OBSERVATIONS OF DUST CONTINUUM IN 145 GALAXIES IN THE COSMOS SURVEY FIELD , 2015, 1511.05149.

[34]  O. Fèvre,et al.  THE COSMOS2015 CATALOG: EXPLORING THE 1 < z < 6 UNIVERSE WITH HALF A MILLION GALAXIES , 2016, 1604.02350.

[35]  G. Richards,et al.  An Observational Determination of the Bolometric Quasar Luminosity Function , 2006, astro-ph/0605678.

[36]  O. Ilbert,et al.  Galaxies at redshifts 5 to 6 with systematically low dust content and high [C ii] emission , 2015, Nature.

[37]  L. Ho,et al.  Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies: Supplemental Material , 2013, 1304.7762.

[38]  A. Cimatti,et al.  The Herschel* PEP/HerMES luminosity function - I. Probing the evolution of PACS selected Galaxies to z ≃ 4 , 2013, 1302.5209.

[39]  G. Cresci,et al.  ARE THE BULK OF z > 2 HERSCHEL GALAXIES PROTO-SPHEROIDS? , 2015, 1502.03686.

[40]  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[41]  D. Elbaz,et al.  THE EVOLVING INTERSTELLAR MEDIUM OF STAR-FORMING GALAXIES SINCE z = 2 AS PROBED BY THEIR INFRARED SPECTRAL ENERGY DISTRIBUTIONS , 2012, 1210.1035.

[42]  F. Fontanot,et al.  Star Formation in Herschel's Monsters versus Semi-Analytic Models , 2015, 1506.01518.

[43]  T. D. Matteo,et al.  Energy input from quasars regulates the growth and activity of black holes and their host galaxies , 2005, Nature.

[44]  E. Cackett,et al.  THE FUNDAMENTAL PLANE OF ACCRETION ONTO BLACK HOLES WITH DYNAMICAL MASSES , 2009, 0906.3285.

[45]  M. Vaccari,et al.  HELP: The Herschel Extragalactic Legacy Project and The Coming of Age of Multi-wavelength Astrophysics , 2015, 1508.06444.

[46]  M. Dickinson,et al.  “Super-deblended” Dust Emission in Galaxies. I. The GOODS-North Catalog and the Cosmic Star Formation Rate Density out to Redshift 6 , 2017, 1703.05281.

[47]  Ž. Ivezić,et al.  AGN Dusty Tori. II. Observational Implications of Clumpiness , 2008 .

[48]  Marcia J. Rieke,et al.  Confusion of Extragalactic Sources in the Mid- and Far-Infrared: Spitzer and Beyond , 2004 .

[49]  B. Magnelli,et al.  Tracing the cosmic growth of supermassive black holes to z ∼ 3 with Herschel , 2014, 1401.4503.

[50]  Tucson,et al.  Infrared Luminosity Functions from the Chandra Deep Field-South: The Spitzer View on the History of Dusty Star Formation at 0 ≲ z ≲ 1* , 2005, astro-ph/0506462.

[51]  A. Hopkins,et al.  GAMA/H-ATLAS: common star formation rate indicators and their dependence on galaxy physical parameters , 2016, 1607.02971.

[52]  Hilo,et al.  Unveiling Dust-enshrouded Star Formation in the Early Universe: a Sub-mm Survey of the Hubble Deep Field , 1998, astro-ph/9806297.

[53]  J. Bernard-Salas,et al.  DIAGNOSTICS OF AGN-DRIVEN MOLECULAR OUTFLOWS IN ULIRGs FROM HERSCHEL-PACS OBSERVATIONS OF OH AT 119 μm , 2013, 1307.6224.

[54]  A. Streblyanska,et al.  HerMES: CANDIDATE HIGH-REDSHIFT GALAXIES DISCOVERED WITH HERSCHEL/SPIRE, , 2013, 1310.7583.

[55]  M. Rowan-Robinson,et al.  The Herschel Multi-tiered Extragalactic Survey: HerMES , 2012, 1203.2562.

[56]  M. Malkan,et al.  The Extended 12-micron galaxy sample , 1993, astro-ph/9306013.

[57]  A. Fontana,et al.  The assembly of ‘normal’ galaxies at z ∼ 7 probed by ALMA , 2015, 1502.06634.

[58]  G. Zamorani,et al.  Unveiling Obscured Accretion in the Chandra Deep Field-South , 2007, 0705.2864.

[59]  S. E. Persson,et al.  THE SFR–M* RELATION AND EMPIRICAL STAR FORMATION HISTORIES FROM ZFOURGE AT 0.5 < z < 4 , 2015, 1510.06072.

[60]  M. Dickinson,et al.  Cosmic Star-Formation History , 1996, 1403.0007.

[61]  Joern Wilms,et al.  The Hot and Energetic Universe: A White Paper presenting the science theme motivating the Athena+ mission , 2013 .

[62]  D. Clements,et al.  The star formation rate density from z = 1 to 6 , 2016, 1605.03937.

[63]  A. Fontana,et al.  Evolution of cosmic star formation in the SCUBA-2 Cosmology Legacy Survey , 2016, 1607.04283.

[64]  Revisiting the infrared spectra of active galactic nuclei with a new torus emission model , 2005, astro-ph/0511428.

[65]  Hans Ulrik Nørgaard-Nielsen,et al.  Observations of the Hubble Deep Field with the Infrared Space Observatory V. Spectral energy distributions starburst models and star formation history , 1997 .

[66]  V. A. Bruce,et al.  A deep ALMA image of the Hubble Ultra Deep Field , 2016, 1606.00227.

[67]  D. Croton Evolution in the black hole mass–bulge mass relation: a theoretical perspective , 2005, astro-ph/0512375.

[68]  S. Maddox,et al.  The Herschel-ATLAS data release 1: I. Maps, catalogues and number counts , 2016, 1606.09615.

[69]  M. Bonato,et al.  Exploring the early dust-obscured phase of galaxy formation with blind mid-/far-infrared spectroscopic surveys , 2013, 1312.1891.

[70]  Columbia,et al.  Star Formation in AEGIS Field Galaxies since z = 1.1: The Dominance of Gradually Declining Star Formation, and the Main Sequence of Star-forming Galaxies , 2007, astro-ph/0701924.

[71]  D. Walton,et al.  THE NuSTAR EXTRAGALACTIC SURVEYS: THE NUMBER COUNTS OF ACTIVE GALACTIC NUCLEI AND THE RESOLVED FRACTION OF THE COSMIC X-RAY BACKGROUND , 2015, 1511.04183.

[72]  N. Menci,et al.  CHASING HIGHLY OBSCURED QSOs IN THE COSMOS FIELD , 2008, 0810.0720.

[73]  D. Elbaz,et al.  Mid-infrared Luminous Quasars in the GOODS– Herschel Fields: A Large Population of Heavily Obscured, Compton-Thick Quasars at z ≈ 2 , 2015, 1504.03329.

[74]  R. Maiolino,et al.  Physical Properties of the First Quasars , 2017, Publications of the Astronomical Society of Australia.

[75]  M. Malkan,et al.  Tracing black hole accretion with SED decomposition and IR lines: from local galaxies to the high-z Universe , 2016, 1603.02818.

[76]  O. Ilbert,et al.  The Interstellar Medium In Galaxies Seen A Billion Years After The Big Bang , 2015, 1503.07596.

[77]  K. Nandra,et al.  An XMM–Newton spectral survey of 12 μm selected galaxies – II. Implications for AGN selection and unification , 2011, 1103.2181.

[78]  Caltech,et al.  The Hubble Deep Field-North SCUBA Super-map - IV. Characterizing submillimetre galaxies using deep Spitzer imaging , 2006, astro-ph/0605573.

[79]  Lourdes Verdes-Montenegro,et al.  Advancing Astrophysics with the Square Kilometre Array , 2015 .

[80]  D. Elbaz,et al.  POLYCYCLIC AROMATIC HYDROCARBON AND MID-INFRARED CONTINUUM EMISSION IN A z > 4 SUBMILLIMETER GALAXY , 2013, 1306.5235.

[81]  J. Schaye,et al.  Cosmological simulations of the growth of supermassive black holes and feedback from active galactic nuclei: method and tests , 2009, 0904.2572.

[82]  M. Salvato,et al.  A massive protocluster of galaxies at a redshift of z ≈ 5.3 , 2011, Nature.

[83]  Andrew M. Hopkins,et al.  THE STAR FORMATION RATE IN THE REIONIZATION ERA AS INDICATED BY GAMMA-RAY BURSTS , 2009, 0906.0590.

[84]  A. Cimatti,et al.  THE LESSER ROLE OF STARBURSTS IN STAR FORMATION AT z = 2 , 2011, 1108.0933.