Non-Mycorrhizal Plants: The Exceptions that Prove the Rule.

[1]  L. Tedersoo,et al.  Evolutionary history of mycorrhizal symbioses and global host plant diversity. , 2018, The New phytologist.

[2]  G. Coupland,et al.  Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition , 2017, Proceedings of the National Academy of Sciences.

[3]  H. Van Erp,et al.  Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant , 2017, Science.

[4]  P. Dörmann,et al.  Arbuscular mycorrhiza-specific enzymes FatM and RAM2 fine-tune lipid biosynthesis to promote development of arbuscular mycorrhiza. , 2017, The New phytologist.

[5]  W. Eisenreich,et al.  Lipid transfer from plants to arbuscular mycorrhiza fungi , 2017, bioRxiv.

[6]  P. Stevens,et al.  Mutualism Persistence and Abandonment during the Evolution of the Mycorrhizal Symbiosis , 2016, The American Naturalist.

[7]  J. Stajich,et al.  A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data , 2016, Mycologia.

[8]  A. Brachmann,et al.  The effector candidate repertoire of the arbuscular mycorrhizal fungus Rhizophagus clarus , 2016, BMC Genomics.

[9]  L. Mueller,et al.  Genes conserved for arbuscular mycorrhizal symbiosis identified through phylogenomics , 2016, Nature Plants.

[10]  Krystyna A. Kelly,et al.  Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex , 2015, Science.

[11]  V. Fiorilli,et al.  Host and non-host roots in rice: cellular and molecular approaches reveal differential responses to arbuscular mycorrhizal fungi , 2015, Front. Plant Sci..

[12]  D. Weigel,et al.  Beyond the thale: comparative genomics and genetics of Arabidopsis relatives , 2015, Nature Reviews Genetics.

[13]  M. Udvardi,et al.  Suppression of Arbuscule Degeneration in Medicago truncatula phosphate transporter4 Mutants Is Dependent on the Ammonium Transporter 2 Family Protein AMT2;3 , 2015, Plant Cell.

[14]  C. Azcón-Aguilar,et al.  Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. , 2015, The New phytologist.

[15]  P. Bonfante,et al.  Arbuscular mycorrhizal dialogues: do you speak 'plantish' or 'fungish'? , 2015, Trends in plant science.

[16]  P. Olsson,et al.  The fungal perspective of arbuscular mycorrhizal colonization in 'nonmycorrhizal' plants. , 2015, The New phytologist.

[17]  M. Delorenzi,et al.  A novel bioinformatics pipeline to discover genes related to arbuscular mycorrhizal symbiosis based on their evolutionary conservation pattern among higher plants , 2014, BMC Plant Biology.

[18]  F. Krajinski,et al.  Through the doors of perception to function in arbuscular mycorrhizal symbioses. , 2014, The New phytologist.

[19]  C. Pieterse,et al.  Induced systemic resistance by beneficial microbes. , 2014, Annual review of phytopathology.

[20]  I. Fernández,et al.  Defense Related Phytohormones Regulation in Arbuscular Mycorrhizal Symbioses Depends on the Partner Genotypes , 2014, Journal of Chemical Ecology.

[21]  G. Coruzzi,et al.  Comparative Phylogenomics Uncovers the Impact of Symbiotic Associations on Host Genome Evolution , 2014, PLoS genetics.

[22]  S. Baldermann,et al.  Arbuscular mycorrhizal fungi affect glucosinolate and mineral element composition in leaves of Moringa oleifera , 2014, Mycorrhiza.

[23]  C. Pieterse,et al.  Arbuscular mycorrhizal fungi reduce growth and infect roots of the non-host plant Arabidopsis thaliana. , 2013, Plant, cell & environment.

[24]  H. Lambers,et al.  Interactions between arbuscular mycorrhizal and non-mycorrhizal plants: do non-mycorrhizal species at both extremes of nutrient availability play the same game? , 2013, Plant, cell & environment.

[25]  C. Gutjahr,et al.  Cell and developmental biology of arbuscular mycorrhiza symbiosis. , 2013, Annual review of cell and developmental biology.

[26]  G. Bécard,et al.  Evolution of the plant-microbe symbiotic 'toolkit'. , 2013, Trends in plant science.

[27]  M. Zobel,et al.  Mycorrhizas in the Central European flora: relationships with plant life history traits and ecology. , 2013, Ecology.

[28]  T. Boller,et al.  The family of ammonium transporters (AMT) in Sorghum bicolor: two AMT members are induced locally, but not systemically in roots colonized by arbuscular mycorrhizal fungi. , 2013, The New phytologist.

[29]  C. Poschenrieder,et al.  Arbuscular Mycorrhiza in Glucosinolate‐Containing Plants: The Story of the Metal Hyperaccumulator Noccaea (Thlaspi) praecox (Brassicaceae) , 2013 .

[30]  J. F. Marsh,et al.  A Common Signaling Process that Promotes Mycorrhizal and Oomycete Colonization of Plants , 2012, Current Biology.

[31]  K. Mysore,et al.  A GRAS-Type Transcription Factor with a Specific Function in Mycorrhizal Signaling , 2012, Current Biology.

[32]  M. V. D. Heijden,et al.  No evidence for allelopathic effects of arbuscular mycorrhizal fungi on the non-host plant Stellaria media , 2012, Plant and Soil.

[33]  Christopher Walker,et al.  Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. , 2012, The New phytologist.

[34]  M. Lohse,et al.  Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. , 2012, The Plant journal : for cell and molecular biology.

[35]  M. Pozo,et al.  Strigolactones: a cry for help in the rhizosphere , 2011 .

[36]  S. West,et al.  Reciprocal Rewards Stabilize Cooperation in the Mycorrhizal Symbiosis , 2011, Science.

[37]  N. Requena,et al.  Dating in the dark: how roots respond to fungal signals to establish arbuscular mycorrhizal symbiosis. , 2011, Current opinion in plant biology.

[38]  N. Requena,et al.  A Secreted Fungal Effector of Glomus intraradices Promotes Symbiotic Biotrophy , 2011, Current Biology.

[39]  M. J. Harrison,et al.  Two Medicago truncatula Half-ABC Transporters Are Essential for Arbuscule Development in Arbuscular Mycorrhizal Symbiosis[W] , 2010, Plant Cell.

[40]  Colby G Starker,et al.  Medicago truncatula Vapyrin is a novel protein required for arbuscular mycorrhizal symbiosis. , 2010, The Plant journal : for cell and molecular biology.

[41]  M. Rillig,et al.  Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi , 2009, Proceedings of the Royal Society B: Biological Sciences.

[42]  Heikham Evelin,et al.  Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. , 2009, Annals of botany.

[43]  Marek Dynowski,et al.  A Mycorrhizal-Specific Ammonium Transporter from Lotus japonicus Acquires Nitrogen Released by Arbuscular Mycorrhizal Fungi1 , 2009, Plant Physiology.

[44]  Mark C. Brundrett Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis , 2009, Plant and Soil.

[45]  P. Kump,et al.  Changes in elemental uptake and arbuscular mycorrhizal colonisation during the life cycle of Thlaspi praecox Wulfen. , 2007, Chemosphere.

[46]  P. Bellingham,et al.  On the perils of mycorrhizal status lists: the case of Buddleja davidii , 2007, Mycorrhiza.

[47]  C. Azcón-Aguilar,et al.  Unraveling mycorrhiza-induced resistance. , 2007, Current opinion in plant biology.

[48]  J. Klironomos,et al.  Influence of Phylogeny on Fungal Community Assembly and Ecosystem Functioning , 2007, Science.

[49]  M. J. Harrison,et al.  A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis , 2007, Proceedings of the National Academy of Sciences.

[50]  M. Rillig,et al.  Review Blackwell Publishing Ltd , 2006 .

[51]  B. Wang,et al.  Phylogenetic distribution and evolution of mycorrhizas in land plants , 2006, Mycorrhiza.

[52]  F. W. Smith,et al.  Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots , 2005, Planta.

[53]  S. Dickson The Arum-Paris continuum of mycorrhizal symbioses. , 2004, The New phytologist.

[54]  N. Amrhein,et al.  Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[55]  M. J. Harrison,et al.  A Phosphate Transporter from Medicago truncatula Involved in the Acquisition of Phosphate Released by Arbuscular Mycorrhizal Fungi Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.004861. , 2002, The Plant Cell Online.

[56]  K. Turnau,et al.  Influence of restoration on arbuscular mycorrhiza of Biscutella laevigata L. (Brassicaceae) and Plantago lanceolata L. (Plantaginaceae) from calamine spoil mounds , 2002, Mycorrhiza.

[57]  J. Jansa,et al.  A phosphate transporter expressed in arbuscule-containing cells in potato , 2001, Nature.

[58]  R. Augé Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis , 2001, Mycorrhiza.

[59]  L. Schauser,et al.  The Lotus japonicus LjSym4 gene is required for the successful symbiotic infection of root epidermal cells. , 2000, Molecular plant-microbe interactions : MPMI.

[60]  D. Redecker,et al.  Glomalean fungi from the Ordovician. , 2000, Science.

[61]  E. Journet,et al.  Four Genes of Medicago truncatula Controlling Components of a Nod Factor Transduction Pathway , 2000, Plant Cell.

[62]  M. Giovannetti,et al.  Meeting a non-host: the behaviour of AM fungi , 1998, Mycorrhiza.

[63]  Ian R. Sanders,et al.  DIFFERENT ARBUSCULAR MYCORRHIZAL FUNGAL SPECIES ARE POTENTIAL DETERMINANTS OF PLANT COMMUNITY STRUCTURE , 1998 .

[64]  R. Boerner,et al.  Vesicular arbuscular mycorrhizal development in the Brassicaceae in relation to plant life span , 1996 .

[65]  R. Boerner,et al.  Arbuscular mycorrhizal development in three crucifers , 1995, Mycorrhiza.

[66]  B. Dell,et al.  Nutrient uptake in mycorrhizal symbiosis , 1994, Plant and Soil.

[67]  D. Read,et al.  The contributions of mycorrhizal fungi to the determination of plant community structure , 1994, Plant and Soil.

[68]  R. E. Koske,et al.  Mycorrhizae in Hawaiian angiosperms: a survey with implications for the origin of the native flora. , 1992 .

[69]  E. Allen,et al.  Carbon source of VA mycorrhizal fungi associated with Chenopodiaceae from a semiarid shrub-steppe. , 1990 .

[70]  E. L. Harley,et al.  A CHECK‐LIST OF MYCORRHIZA IN THE BRITISH FLORA—ADDENDA, ERRATA AND INDEX , 1987 .

[71]  P. Reddell,et al.  THE DISTRIBUTION OF MYCORRHIZAS AMONG FAMILIES OF VASCULAR PLANTS. , 1987, The New phytologist.

[72]  M. Tester,et al.  The phenomenon of "nonmycorrhizal" plants , 1987 .

[73]  P. Williams,et al.  HYPHAL PENETRATION OF BRASSICA (CRUCIFERAE) ROOTS BY A VESICULAR–ARBUSCULAR MYCORRHIZAL FUNGUS , 1985 .

[74]  I. Tommerup DEVELOPMENT OF INFECTION BY A VESICULAR–ARBUSCULAR MYCORRHIZAL FUNGUS IN BRASSICA NAPUS L. AND TRIFOLIUM SUBTERRANEUM L. , 1984 .

[75]  R. J. Medve The Mycorrhizal Status of the Cruciferae , 1983 .

[76]  M. C. Hirrel,et al.  Vesicular–arbuscular mycorrhizae in the Chenopodiaceae and Cruciferae: do they occur? , 1978 .

[77]  M. Zobel,et al.  Mycorrhizal status helps explain invasion success of alien plant species. , 2017, Ecology.

[78]  P. Kump,et al.  Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. , 2006, Environmental pollution.

[79]  H. Bothe,et al.  Colonization of pennycresses (Thlaspi spp.) of the Brassicaceae by arbuscular mycorrhizal fungi. , 2003, Journal of plant physiology.

[80]  M. Allen,et al.  Responses of the non7hyphen;mycotrophic plant Salsola kali to invasion by vesicular–arbuscular mycorrhizal fungi , 1989 .

[81]  J. Ocampo Vesicular-arbuscular mycorrhizal infection of “host” and “non-host” plants: Effect on the growth responses of the plants and competition between them , 1986 .

[82]  A. Ashford,et al.  Vesicular-Arbuscular Mycorrhizal Associations of Vascular Plants on Heron Island, a Great Barrier Reef Coral Cay , 1985 .

[83]  J. Ocampo,et al.  INFLUENCE OF PLANT INTERACTIONS ON VESICULAR‐ARBUSCULAR MYCORRHIZAL INFECTIONS. I. HOST AND NON‐HOST PLANTS GROWN TOGETHER , 1980 .

[84]  D. Wagner,et al.  THE ROLE OF ENDOMYCORRHIZAE IN REVEGETATION PRACTICES IN THE SEMI-ARID WEST. I. A COMPARISON OF INCIDENCE OF MYCORRHIZAE IN SEVERELY DISTURBED VS. NATURAL ENVIRONMENTS , 1979 .

[85]  T. Whitham,et al.  Tansley Review , 2022 .