Study on a Possible Darwinian Origin of Quantum Mechanics

A sketchy subquantum theory deeply influenced by Wheeler’s ideas (Am. J. Phys. 51:398–404, 1983) and by the de Broglie-Bohm interpretation (Goldstein in Stanford Encyclopedia of Philosophy, 2006) of quantum mechanics is further analyzed. In this theory a fundamental system is defined as a dual entity formed by bare matter and a methodological probabilistic classical Turing machine. The evolution of the system would be determined by three Darwinian informational regulating principles. Some progress in the derivation of the postulates of quantum mechanics from these regulating principles is reported. The entanglement in a bipartite system is preliminarily considered.

[1]  Sven Aerts,et al.  An Operational Characterization for Optimal Observation of Potential Properties in Quantum Theory and Signal Analysis , 2008 .

[2]  S. Kais,et al.  Entanglement as measure of electron–electron correlation in quantum chemistry calculations , 2005, quant-ph/0507148.

[3]  Johann Summhammer Maximum predictive power and the superposition principle , 1994 .

[4]  Dusko Pavlovic On quantum statistics in data analysis , 2008, ArXiv.

[5]  Carlton M. Caves,et al.  Subjective probability and quantum certainty , 2006 .

[6]  C. J. van Rijsbergen,et al.  The geometry of information retrieval , 2004 .

[7]  Carlos Baladrón In search of the adaptive foundations of quantum mechanics , 2010 .

[8]  C. Callender The emergence and interpretation of probability in Bohmian mechanics , 2007 .

[9]  Christopher G. Timpson,et al.  Philosophical Aspects of Quantum Information Theory 1 , 2007 .

[10]  Gerard 't Hooft Quantum Mechanics and Determinism , 2001 .

[11]  Edward Nelson Derivation of the Schrodinger equation from Newtonian mechanics , 1966 .

[12]  J. Wheeler ‘‘On recognizing ‘law without law,’ ’’ Oersted Medal Response at the joint APS–AAPT Meeting, New York, 25 January 1983 , 1983 .

[13]  Roderich Tumulka,et al.  What Is Bohmian Mechanics , 2001, Compendium of Quantum Physics.

[14]  Luis de la Peña,et al.  The quantum dice : an introduction to stochastic electrodynamics , 1996 .

[15]  B. Frieden,et al.  Lagrangians of physics and the game of Fisher-information transfer. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  Rolf Herken,et al.  Retrieved July 19 2004 Universal Turing Machine , 2011 .

[17]  The generalized Fényes-Nelson model for free scalar field theory , 1980, quant-ph/0211097.

[18]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[19]  Charles H. Bennett Logical depth and physical complexity , 1988 .

[20]  B. Roy Frieden,et al.  Fisher information as the basis for the Schrödinger wave equation , 1989 .

[21]  Andrei Khrennikov,et al.  Discrete time dynamical models and their quantum-like context-dependent properties , 2003 .

[22]  Gerard 't Hooft Determinism Beneath Quantum Mechanics , 2002 .

[23]  Y. Dobyns,et al.  Inertial mass and the quantum vacuum fields , 2000, Annalen der Physik.

[24]  L. Accardi Topics in quantum probability , 1981 .

[25]  Comment on ‘‘Fisher information as the basis for the Schrödinger wave equation,’’ by B. Roy Frieden [Am. J. Phys. 57, 1004–1008 (1989)] , 1991 .

[26]  S. Miyashita,et al.  Event-by-event simulation of quantum phenomena : Application to Einstein-Podolosky-Rosen-Bohm experiments , 2007, 0712.3781.

[27]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[28]  Basil J. Hiley,et al.  Non-locality and locality in the stochastic interpretation of quantum mechanics , 1989 .

[29]  Andrei Khrennikov,et al.  Contextual Approach to Quantum Formalism , 2009 .