Surviving High-Temperature Calcination: ZrO2 -Induced Hematite Nanotubes for Photoelectrochemical Water Oxidation.

Nanotubular Fe2 O3 is a promising photoanode material, and producing morphologies that withstand high-temperature calcination (HTC) is urgently needed to enhance the photoelectrochemical (PEC) performance. This work describes the design and fabrication of Fe2 O3 nanotube arrays that survive HTC for the first time. By introducing a ZrO2 shell on hydrothermal FeOOH nanorods by atomic layer deposition, subsequent high-temperature solid-state reaction converts FeOOH-ZrO2 nanorods to ZrO2 -induced Fe2 O3 nanotubes (Zr-Fe2 O3 NTs). The structural evolution of the hematite nanotubes is systematically explored. As a result of the nanostructuring and shortened charge collection distance, the nanotube photoanode shows a greatly improved PEC water oxidation activity, exhibiting a photocurrent density of 1.5 mA cm-2 at 1.23 V (vs. reversible hydrogen electrode, RHE), which is the highest among hematite nanotube photoanodes without co-catalysts. Furthermore, a Co-Pi decorated Zr-Fe2 O3 NT photoanode reveals an enhanced onset potential of 0.65 V (vs. RHE) and a photocurrent of 1.87 mA cm-2 (at 1.23 V vs. RHE).

[1]  Shanshan Liu,et al.  Gradient doping of phosphorus in Fe2O3 nanoarray photoanodes for enhanced charge separation† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc03707k Click here for additional data file. , 2016, Chemical science.

[2]  Shanshan Liu,et al.  Enhanced Charge Separation through ALD-Modified Fe2 O3 /Fe2 TiO5 Nanorod Heterojunction for Photoelectrochemical Water Oxidation. , 2016, Small.

[3]  P. Zhang,et al.  Synergistic Cocatalytic Effect of Carbon Nanodots and Co3 O4 Nanoclusters for the Photoelectrochemical Water Oxidation on Hematite. , 2016, Angewandte Chemie.

[4]  X. Chang,et al.  Effective Charge Carrier Utilization in Photocatalytic Conversions. , 2016, Accounts of chemical research.

[5]  Jinlong Gong,et al.  Einkristalline Halbleiter mit kleinen Bandlücken für die solare Wasserspaltung , 2015 .

[6]  Tuo Wang,et al.  Single-Crystal Semiconductors with Narrow Band Gaps for Solar Water Splitting. , 2015, Angewandte Chemie.

[7]  Omid Zandi,et al.  The potential versus current state of water splitting with hematite. , 2015, Physical chemistry chemical physics : PCCP.

[8]  Ali Javey,et al.  Enabling unassisted solar water splitting by iron oxide and silicon , 2015, Nature Communications.

[9]  Yixin Zhao,et al.  Sn-doped hematite films as photoanodes for efficient photoelectrochemical water oxidation , 2015 .

[10]  C. Fan,et al.  Crystallinity Engineering of Hematite Nanorods for High‐Efficiency Photoelectrochemical Water Splitting , 2015, Advanced science.

[11]  F. Mohammadi,et al.  Solar water splitting for hydrogen production with Fe2O3 nanotubes prepared by anodizing method: effect of anodizing time on performance of Fe2O3 nanotube arrays , 2015, Journal of Materials Science: Materials in Electronics.

[12]  Tuo Wang,et al.  Controllable fabrication of nanostructured materials for photoelectrochemical water splitting via atomic layer deposition. , 2014, Chemical Society reviews.

[13]  Zhiliang Wang,et al.  A hematite photoanode with gradient structure shows an unprecedentedly low onset potential for photoelectrochemical water oxidation. , 2014, Physical chemistry chemical physics : PCCP.

[14]  Ho Won Jang,et al.  Vertically ordered hematite nanotube array as an ultrasensitive and rapid response acetone sensor. , 2014, ACS applied materials & interfaces.

[15]  Omid Zandi,et al.  Enhanced Water Splitting Efficiency Through Selective Surface State Removal. , 2014, The journal of physical chemistry letters.

[16]  Yong Ding,et al.  Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. , 2014, Nano letters.

[17]  Xiaogang Yang,et al.  Hematite-based water splitting with low turn-on voltages. , 2013, Angewandte Chemie.

[18]  Coleman X. Kronawitter,et al.  Physical and photoelectrochemical properties of Zr-doped hematite nanorod arrays. , 2013, Nanoscale.

[19]  Jae Sung Lee,et al.  Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting , 2013, Scientific Reports.

[20]  L. Wang,et al.  Si-doped Fe2O3 nanotubular/nanoporous layers for enhanced photoelectrochemical water splitting , 2013 .

[21]  Yongjing Lin,et al.  Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite. , 2013, Accounts of chemical research.

[22]  Qinghua Liu,et al.  Ni-Doped Overlayer Hematite Nanotube: A Highly Photoactive Architecture for Utilization of Visible Light , 2012 .

[23]  J. Yates,et al.  Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. , 2012, Chemical reviews.

[24]  Ji Hoon Park,et al.  Nanoparticulate iron oxide tubes from microporous organic nanotubes as stable anode materials for lithium ion batteries. , 2012, Angewandte Chemie.

[25]  Yichuan Ling,et al.  The influence of oxygen content on the thermal activation of hematite nanowires. , 2012, Angewandte Chemie.

[26]  Yuanyuan Li,et al.  Template synthesis of SnO2/α-Fe2O3 nanotube array for 3D lithium ion battery anode with large areal capacity. , 2012, Nanoscale.

[27]  Thomas W. Hamann,et al.  Voltage dependent photocurrent of thin film hematite electrodes , 2011 .

[28]  Deyan Luan,et al.  α-Fe2O3 nanotubes with superior lithium storage capability. , 2011, Chemical communications.

[29]  D. H. Wang,et al.  Controlled synthesis of vertically aligned hematite on conducting substrate for photoelectrochemical cells: nanorods versus nanotubes. , 2011, ACS applied materials & interfaces.

[30]  M. Grätzel,et al.  Photo-assisted electrodeposition of cobalt–phosphate (Co–Pi) catalyst on hematite photoanodes for solar water oxidation , 2011 .

[31]  C. Wolden,et al.  Activation of hematite nanorod arrays for photoelectrochemical water splitting. , 2011, ChemSusChem.

[32]  Thomas W. Hamann,et al.  Photoelectrochemical investigation of ultrathin film iron oxide solar cells prepared by atomic layer deposition. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[33]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[34]  Anke Weidenkaff,et al.  Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. , 2010, Journal of the American Chemical Society.

[35]  C. Grimes,et al.  Temperature-Dependent Growth of Self-Assembled Hematite (α-Fe2O3) Nanotube Arrays: Rapid Electrochemical Synthesis and Photoelectrochemical Properties , 2009 .

[36]  M. Misra,et al.  Water Photooxidation by Smooth and Ultrathin α-Fe2O3 Nanotube Arrays , 2009 .

[37]  Michael Grätzel,et al.  Influence of Feature Size, Film Thickness, and Silicon Doping on the Performance of Nanostructured Hematite Photoanodes for Solar Water Splitting , 2009 .

[38]  Xun Wang,et al.  Formation of CeO2-ZrO2 solid solution nanocages with controllable structures via Kirkendall effect. , 2008, Journal of the American Chemical Society.

[39]  Hao Shen,et al.  Ordered iron oxide nanotube arrays of controlled geometry and tunable magnetism by atomic layer deposition. , 2007, Journal of the American Chemical Society.

[40]  Craig A Grimes,et al.  Vertically oriented Ti-Fe-O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis. , 2007, Nano letters.

[41]  U. Gösele,et al.  Influence of surface diffusion on the formation of hollow nanostructures induced by the Kirkendall effect: the basic concept. , 2007, Nano letters.

[42]  Nathan S. Lewis,et al.  Principles and Applications of Semiconductor Photoelectrochemistry , 2007 .

[43]  W. Y. Fan,et al.  Formation of Ag2Se nanotubes and dendrite-like structures from UV irradiation of a CSe2/Ag colloidal solution. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[44]  Yi Xie,et al.  Synthesis of hematite (alpha-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors. , 2006, The journal of physical chemistry. B.

[45]  Mato Knez,et al.  Monocrystalline spinel nanotube fabrication based on the Kirkendall effect , 2006, Nature materials.

[46]  Buxing Han,et al.  A Highly Efficient Chemical Sensor Material for H2S: α‐Fe2O3 Nanotubes Fabricated Using Carbon Nanotube Templates , 2005 .

[47]  Jun Chen,et al.  α‐Fe2O3 Nanotubes in Gas Sensor and Lithium‐Ion Battery Applications , 2005 .

[48]  Gabor A. Somorjai,et al.  Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect , 2004, Science.

[49]  R. Nesper,et al.  Nanoröhren und Nanostäbe auf Oxidbasis – anisotrope Bausteine für künftige Nanotechnologien , 2002 .

[50]  Reinhard Nesper,et al.  Oxidic nanotubes and nanorods--anisotropic modules for a future nanotechnology. , 2002, Angewandte Chemie.

[51]  Dalva Lúcia Araújo de Faria,et al.  Raman microspectroscopy of some iron oxides and oxyhydroxides , 1997 .

[52]  Debasis Majumdar,et al.  X‐ray photoelectron spectroscopic studies on yttria, zirconia, and yttria‐stabilized zirconia , 1991 .

[53]  K. Klabunde,et al.  X-ray photoelectron spectroscopy studies of solvated metal atom dispersed catalysts. Monometallic iron and bimetallic iron-cobalt particles on alumina , 1990 .

[54]  F. Cardon,et al.  On the determination of the flat-band potential of a semiconductor in contact with a metal or an electrolyte from the Mott-Schottky plot , 1978 .

[55]  R. Saraswathi,et al.  An impedimetric ammonia sensor based on nanostructured α-Fe2O3 , 2014 .