ASYMPTOTIC BEHAVIOR OF THE BEST SOBOLEV TRACE CONSTANT IN EXPANDING AND CONTRACTING DOMAINS
暂无分享,去创建一个
[1] Julián Fernández Bonder,et al. Existence Results for the p-Laplacian with Nonlinear Boundary Conditions☆☆☆ , 2001 .
[2] Manuel del Pino,et al. ASYMPTOTIC BEHAVIOR OF BEST CONSTANTS AND EXTREMALS FOR TRACE EMBEDDINGS IN EXPANDING DOMAINS* , 2001 .
[3] J. Hale. Topological Methods in the Theory of Nonlinear Integral Equations. M. A. Krasnosel'skii. Translated from the Russian edition (Moscow, 1956) by A. H. Armstrong. J. Burlak, Ed. Pergamon, London; Macmillan, New York, 1964. xii + 395 pp. Illus. $10 , 1964 .
[4] W. Allegretto,et al. A Picone's identity for the p -Laplacian and applications , 1998 .
[5] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[6] Sobolev Trace Inequalities , 2001, math/0107065.
[7] JosEi F. Escobar,et al. Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature on the boundary , 1992 .
[8] Juan Luis Vázquez,et al. A Strong Maximum Principle for some quasilinear elliptic equations , 1984 .
[9] José F. Escobar. Uniqueness theorems on conformal deformation of metrics, Sobolev inequalities, and an eigenvalue estimate , 1990 .
[10] José F. Escobar. Addendum: Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature , 1994 .
[11] Julián Fernández Bonder,et al. A Nonlinear eigenvalue problem with indefinite weights related to the Sobolev trace embedding , 2002 .
[12] J. García Azorero,et al. Existence and nonuniqueness for the p-Laplacian nonlinear Eigenvalues , 1987 .
[13] P. Tolksdorf,et al. Regularity for a more general class of quasilinear elliptic equations , 1984 .
[14] Julio D. Rossi,et al. Isolation and simplicity for the first eigenvalue of the $p$-Laplacian with a nonlinear boundary condition , 2002 .
[15] Xu-Jia Wang,et al. Sharp constant in a Sobolev inequality , 1993 .