ASYMPTOTIC BEHAVIOR OF THE BEST SOBOLEV TRACE CONSTANT IN EXPANDING AND CONTRACTING DOMAINS

We study the asymptotic behavior for the best constant and ex- tremals of the Sobolev trace embedding W 1,p () ,! L q (@) on expanding and contracting domains. We find that the behavior strongly depends on p and q. For contracting domains we prove that the behavior of the best Sobolev trace constant depends on the sign of qN pN + p while for expanding domains it depends on the sign of q p. We also give some results regarding the be- havior of the extremals, for contracting domains we prove that they converge to a constant when rescaled in a suitable way and for expanding domains we observe when a concentration phenomena takes place.

[1]  Julián Fernández Bonder,et al.  Existence Results for the p-Laplacian with Nonlinear Boundary Conditions☆☆☆ , 2001 .

[2]  Manuel del Pino,et al.  ASYMPTOTIC BEHAVIOR OF BEST CONSTANTS AND EXTREMALS FOR TRACE EMBEDDINGS IN EXPANDING DOMAINS* , 2001 .

[3]  J. Hale Topological Methods in the Theory of Nonlinear Integral Equations. M. A. Krasnosel'skii. Translated from the Russian edition (Moscow, 1956) by A. H. Armstrong. J. Burlak, Ed. Pergamon, London; Macmillan, New York, 1964. xii + 395 pp. Illus. $10 , 1964 .

[4]  W. Allegretto,et al.  A Picone's identity for the p -Laplacian and applications , 1998 .

[5]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[6]  Sobolev Trace Inequalities , 2001, math/0107065.

[7]  JosEi F. Escobar,et al.  Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature on the boundary , 1992 .

[8]  Juan Luis Vázquez,et al.  A Strong Maximum Principle for some quasilinear elliptic equations , 1984 .

[9]  José F. Escobar Uniqueness theorems on conformal deformation of metrics, Sobolev inequalities, and an eigenvalue estimate , 1990 .

[10]  José F. Escobar Addendum: Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature , 1994 .

[11]  Julián Fernández Bonder,et al.  A Nonlinear eigenvalue problem with indefinite weights related to the Sobolev trace embedding , 2002 .

[12]  J. García Azorero,et al.  Existence and nonuniqueness for the p-Laplacian nonlinear Eigenvalues , 1987 .

[13]  P. Tolksdorf,et al.  Regularity for a more general class of quasilinear elliptic equations , 1984 .

[14]  Julio D. Rossi,et al.  Isolation and simplicity for the first eigenvalue of the $p$-Laplacian with a nonlinear boundary condition , 2002 .

[15]  Xu-Jia Wang,et al.  Sharp constant in a Sobolev inequality , 1993 .