Identification of nonlinear dynamic systems with input saturation and output backlash using three-block cascade models

Abstract The paper deals with the parameter identification of nonlinear dynamic systems with input saturation and output backlash using three-block cascade models. Multiple application of a decomposition technique provides special formulas for the corresponding nonlinear model description that are linear in parameters. A least-squares-based iterative technique allows estimation of all the model parameters based on measured input/output data. Examples of three-block cascade system identification illustrate the feasibility of proposed method.

[1]  Han-Fu Chen,et al.  Recursive identification for Wiener model with discontinuous piece-wise linear function , 2006, IEEE Transactions on Automatic Control.

[2]  F. Ding,et al.  Maximum likelihood Newton recursive and the Newton iterative estimation algorithms for Hammerstein CARAR systems , 2014 .

[3]  Feng Ding,et al.  Hierarchical Least Squares Estimation Algorithm for Hammerstein–Wiener Systems , 2012, IEEE Signal Processing Letters.

[4]  Stanko Strmcnik,et al.  Identification of nonlinear systems using a piecewise-linear Hammerstein model , 2005, Syst. Control. Lett..

[5]  Ruifeng Ding,et al.  Gradient-based iterative algorithm for Wiener systems with saturation and dead-zone nonlinearities , 2014 .

[6]  Rimantas Pupeikis,et al.  On Recursive parametric Identification of Wiener Systems , 2011, Inf. Technol. Control..

[7]  Er-Wei Bai A blind approach to the Hammerstein-Wiener model identification , 2002, Autom..

[8]  Kazys Kazlauskas,et al.  On Intelligent Extraction of an Internal Signal in a Wiener System Consisting of a Linear Block Followed by Hard-Nonlinearity , 2013, Informatica.

[9]  Zygmunt Hasiewicz,et al.  On Nonparametric Identification of Wiener Systems , 2007, IEEE Transactions on Signal Processing.

[10]  Er-Wei Bai An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems , 1998, Autom..

[11]  Fouad Giri,et al.  An Analytic Geometry Approach to Wiener System Frequency Identification , 2009, IEEE Transactions on Automatic Control.

[12]  Zygmunt Hasiewicz,et al.  Combined parametric-nonparametric identification of Hammerstein systems , 2004, IEEE Transactions on Automatic Control.

[13]  Lennart Ljung,et al.  Theory and Practice of Recursive Identification , 1983 .

[14]  M. Chidambaram,et al.  Computer Control of Processes , 2001 .

[15]  Jozef Vörös,et al.  Compound Operator Decomposition and Its Application to Hammerstein and Wiener Systems , 2010 .

[16]  Hui Juan Yuan Recursive Least Squares Algorithm for Nonlinear Systems with Piece-Wise Linearities , 2013 .

[17]  Jozef Vörös Parametric Identification of Systems with General Backlash , 2012, Informatica.

[18]  Jing Chen,et al.  Several gradient parameter estimation algorithms for dual-rate sampled systems , 2014, J. Frankl. Inst..

[19]  Guangjun Liu,et al.  Identification of Hammerstein systems using key-term separation principle, auxiliary model and improved particle swarm optimisation algorithm , 2013, IET Signal Process..

[20]  Jozef Vörös,et al.  Identification of cascade systems with backlash , 2010, Int. J. Control.

[21]  J. Voros AN ITERATIVE METHOD FOR HAMMERSTEIN-WIENER SYSTEMS PARAMETER IDENTIFICATION , 2004 .

[22]  Ping Zhang,et al.  A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process , 2012 .

[23]  Steven X. Ding,et al.  Real-Time Implementation of Fault-Tolerant Control Systems With Performance Optimization , 2014, IEEE Transactions on Industrial Electronics.

[24]  Yonghong Tan,et al.  Recursive identification algorithm for dynamic systems with output backlash and its convergence , 2009, Int. J. Appl. Math. Comput. Sci..

[25]  Feng Ding,et al.  Auxiliary model based least squares parameter estimation algorithm for feedback nonlinear systems using the hierarchical identification principle , 2013, J. Frankl. Inst..

[26]  Cishen Zhang,et al.  A New Deterministic Identification Approach to Hammerstein Systems , 2014, IEEE Transactions on Signal Processing.

[27]  Jozef Voros PARAMETER IDENTIFICATION OF STATIC AND DYNAMIC NONLINEAR SYSTEMS WITH SATURATIONS , 2003 .

[28]  J. Vörös Recursive Identification of Nonlinear Cascade Systems With Time-Varying General Input Backlash , 2013 .

[29]  Er-Wei Bai,et al.  Towards identification of Wiener systems with the least amount of a priori information: IIR cases , 2009, Autom..

[30]  Er-Wei Bai,et al.  Iterative identification of Hammerstein systems , 2007, Autom..

[31]  Feng Ding,et al.  Data filtering based recursive least squares algorithm for Hammerstein systems using the key-term separation principle , 2013, Inf. Sci..

[32]  Andrzej Janczak,et al.  Instrumental variables approach to identification of a class of MIMO Wiener systems , 2007 .

[33]  Feng Ding,et al.  Least squares based and gradient based iterative identification for Wiener nonlinear systems , 2011, Signal Process..

[34]  J. Voros Modeling and parameter identification of systems with multisegment piecewise-linear characteristics , 2002 .

[35]  H. Karimi,et al.  Study on Support Vector Machine-Based Fault Detection in Tennessee Eastman Process , 2014 .

[36]  Er-Wei Bai,et al.  Iterative identification of Hammerstein systems , 2007, Autom..

[37]  Feng Yu,et al.  Recursive identification for Hammerstein–Wiener systems with dead-zone input nonlinearity , 2013 .

[38]  Rimantas Pupeikis,et al.  On the Identification of Wiener Systems Having Saturation-like Functions with Positive Slopes , 2005, Informatica.

[39]  Feng Ding,et al.  Identification methods for Hammerstein nonlinear systems , 2011, Digit. Signal Process..

[40]  Andrzej Janczak,et al.  Neural network approach for identification of Hammerstein systems , 2003 .

[41]  Fouad Giri,et al.  Frequency identification of nonparametric Wiener systems containing backlash nonlinearities , 2013, Autom..

[42]  Johan Schoukens,et al.  Hammerstein-Wiener system estimator initialization , 2002, Autom..