First equilibrium reconstruction for ITER with the code NICE

In this short paper we present the first application of the IMAS compatible code NICE to equilibrium reconstrution for ITER geometry. The inverse problem is formulated as a least square problem and the numerical methods implemented in NICE in order to solve it are presented. The results of a numerical experiment are shown: a reference equilibrium is computed from which a set of synthetic magnetic measurements are extracted. Then these measurements are used successfully to reconstruct the equilibrium of the plasma.

[1]  H. Heumann,et al.  Plasma initiation and preliminary magnetic control in the HL-2M tokamak , 2021 .

[2]  Blaise Faugeras,et al.  FEM-BEM coupling methods for Tokamak plasma axisymmetric free-boundary equilibrium computations in unbounded domains , 2017, J. Comput. Phys..

[3]  Francesca Rapetti,et al.  Tokamak free-boundary plasma equilibrium computation using finite elements of class C0 and C1 within a mortar element approach , 2021, J. Comput. Phys..

[4]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[5]  Harold Grad,et al.  HYDROMAGNETIC EQUILIBRIA AND FORCE-FREE FIELDS , 1958 .

[6]  Stefaan Poedts,et al.  Principles of Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas , 2004 .

[7]  Xiao Song,et al.  Automating the design of tokamak experiment scenarios , 2019, J. Comput. Phys..

[8]  V. Shafranov,et al.  Determination of the parameters βI and li in a Tokamak for arbitrary shape of plasma pinch cross-section , 1971 .

[9]  Gabriel N. Gatica,et al.  The Uncoupling of Boundary Integral and Finite Element Methods for Nonlinear Boundary Value Problems , 1995 .

[10]  N H.HEUMAN,et al.  Quasi-static Free-Boundary Equilibrium of Toroidal Plasma with CEDRES + + : Computational Methods and Applications , 2014 .

[11]  V. Shafranov On Magnetohydrodynamical Equilibrium Configurations , 1958 .

[12]  L. Segal John , 2013, The Messianic Secret.

[13]  J. Blum,et al.  2D interpolation and extrapolation of discrete magnetic measurements with toroidal harmonics for equilibrium reconstruction in a tokamak , 2014 .

[14]  L. L. Lao,et al.  Separation of β̄p and ℓi in tokamaks of non-circular cross-section , 1985 .

[15]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[16]  J. I. Ramos,et al.  Numerical simulation and optimal control in plasma physics with applications to Tokamaks , 1990 .

[17]  Jacques Blum,et al.  Problems and methods of self-consistent reconstruction of tokamak equilibrium profiles from magnetic and polarimetric measurements , 1990 .

[18]  N. Murphy Ideal Magnetohydrodynamics , 2014, Foundations of Plasma Physics for Physicists and Mathematicians.

[19]  Virginie Grandgirard,et al.  Modelisation de l'equilibre d'un plasma de tokamak , 1999 .

[20]  Stephen C. Jardin,et al.  Computational Methods in Plasma Physics , 2010 .

[21]  W. Zwingmann,et al.  Multi-machine analysis of EU experiments using the EUROfusion integrated modelling (EU-IM) framework , 2019 .

[22]  W. Zwingmann Equilibrium analysis of steady state tokamak discharges , 2003 .

[23]  B. B. Carvalho,et al.  Plasma boundary reconstruction in ISTTOK using magnetic diagnostic data , 2019, Journal of Instrumentation.

[24]  David W. Swain,et al.  An efficient technique for magnetic analysis of non-circular, high-beta tokamak equilibria , 1982 .

[25]  B. P. Duval,et al.  Design and first applications of the ITER integrated modelling & analysis suite , 2015 .

[26]  Blaise Faugeras,et al.  An overview of the numerical methods for tokamak plasma equilibrium computation implemented in the NICE code , 2020, Fusion Engineering and Design.

[27]  Blaise Faugeras,et al.  Reconstruction of the equilibrium of the plasma in a Tokamak and identification of the current density profile in real time , 2009, J. Comput. Phys..

[28]  L. Zakharov,et al.  Equilibrium of a toroidal plasma with noncircular cross section , 1973 .

[29]  J. L. Luxon,et al.  Magnetic analysis of non-circular cross-section tokamaks , 1982 .

[30]  Blaise Faugeras,et al.  Real time plasma equilibrium reconstruction in a Tokamak , 2008, 0909.1646.

[31]  Blaise Faugeras,et al.  Optimal control of a coupled partial and ordinary differential equations system for the assimilation of polarimetry Stokes vector measurements in tokamak free-boundary equilibrium reconstruction with application to ITER , 2017, Comput. Phys. Commun..

[32]  R. Lüst,et al.  Axialsymmetrische magnetohydrodynamische Gleichgewichtskonfigurationen , 1957 .

[33]  P. McCarthy,et al.  The CLISTE Interpretive Equilibrium Code , 1999 .

[34]  Stefano Coda,et al.  Tokamak equilibrium reconstruction code LIUQE and its real time implementation , 2015 .

[35]  B. Faugeras,et al.  Equilibrium reconstruction at JET using Stokes model for polarimetry , 2018, Nuclear Fusion.

[36]  L. L. Lao,et al.  Equilibrium analysis of current profiles in tokamaks , 1990 .

[37]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..