One-pot interfacial polymerization to prepare PolyHIPEs with functional surface

[1]  Xiang-Jie Gao,et al.  Miniemulsion template polymerization to prepare a sub-micrometer porous polymeric monolith with an inter-connected structure and very high mechanical strength , 2012 .

[2]  P. Krajnc,et al.  Methacrylic acid microcellular highly porous monoliths: Preparation and functionalisation , 2012 .

[3]  Xiang-Jie Gao,et al.  Pushing the mechanical strength of PolyHIPEs up to the theoretical limit through living radical polymerization , 2012 .

[4]  E. Cosgriff-Hernandez,et al.  Injectable polyHIPEs as high-porosity bone grafts. , 2011, Biomacromolecules.

[5]  P. Krajnc,et al.  Responsive Poly(acrylic acid) and Poly(N‐isopropylacrylamide) Monoliths by High Internal Phase Emulsion (HIPE) Templating , 2011 .

[6]  Irena Pulko,et al.  Emulsion templated open porous membranes for protein purification. , 2011, Journal of chromatography. A.

[7]  M. Silverstein,et al.  Nanoparticle-Based and Organic-Phase-Based AGET ATRP PolyHIPE Synthesis within Pickering HIPEs and Surfactant-Stabilized HIPEs , 2011 .

[8]  Irena Pulko,et al.  POLY ( STYRENE-CO-DIVINYLBENZENE-CO2-ETHYLH EXYL ) ACRYLATE MEMBRANES WITH INTERCONNECTED MACROPOROUS STRUCTURE POLI ( STIREN-KO-DIVINILBENZEN-KO-2-ETILHEKSIL ) AKRILATNE MEMBRANE , 2011 .

[9]  O. Mondain-Monval,et al.  The Preparation and Use of PolyHIPE-Grafted Reactants to Reduce Alkyl Halides under Free-Radical Conditions. , 2010 .

[10]  K. Ulubayram,et al.  Acrylic-based high internal phase emulsion polymeric monolith for capillary electrochromatography. , 2010, Journal of chromatography. A.

[11]  Yingwu Luo,et al.  pH Effects on the Synthesis of Nanocapsules via Interfacial Miniemulsion Polymerization Mediated by Amphiphilic RAFT Agent with the R Group of Poly(methyl acrylic acid-ran-styrene) , 2010 .

[12]  M. Silverstein,et al.  Enhancing hydrophilicity in a hydrophobic porous emulsion‐templated polyacrylate , 2009 .

[13]  Shiping Zhu,et al.  Ab Initio Batch Emulsion RAFT Polymerization of Styrene Mediated by Poly(acrylic acid-b-styrene) Trithiocarbonate , 2009 .

[14]  Sébastien Martinet,et al.  Macroporous poly(vinylidene fluoride) membrane as a separator for lithium-ion batteries with high charge rate capacity , 2009 .

[15]  P. Krajnc,et al.  Cross-linked porous poly(acrylic acid-co-acrylamide) from high internal phase emulsions: preparation and functionalisation , 2009 .

[16]  Irena Pulko,et al.  Porogenic Solvents Influence on Morphology of 4-Vinylbenzyl Chloride Based PolyHIPEs , 2008 .

[17]  M. Silverstein,et al.  Porous poly(2-hydroxyethyl methacrylate) hydrogels synthesized within high internal phase emulsions. , 2007, Soft matter.

[18]  P. Krajnc,et al.  Highly Porous Open-Cellular Monoliths from 2-Hydroxyethyl Methacrylate Based High Internal Phase Emulsions (HIPEs): Preparation and Void Size Tuning , 2007 .

[19]  P. Krajnc,et al.  Aryl acrylate porous functional polymer supports from water-in-oil-in-water multiple emulsions , 2007 .

[20]  Chun-tian Zhao,et al.  Emulsion-templated porous materials (PolyHIPEs) for selective ion and molecular recognition and transport: applications in electrochemical sensing , 2007 .

[21]  P. Krajnc,et al.  4-Vinylbenzyl chloride based porous spherical polymer supports derived from water-in-oil-in-water emulsions , 2005 .

[22]  Almar Postma,et al.  Advances in RAFT polymerization: the synthesis of polymers with defined end-groups , 2005 .

[23]  Irena Pulko,et al.  Acrylic Acid “Reversed” PolyHIPEs , 2005 .

[24]  A. Cooper,et al.  Synthesis and applications of emulsion-templated porous materials. , 2005, Soft matter.

[25]  P. Krajnc,et al.  PolyHIPE Supports in Batch and Flow-Through Suzuki Cross-Coupling Reactions , 2005 .

[26]  Neil R. Cameron,et al.  High internal phase emulsion templating as a route to well-defined porous polymers , 2005 .

[27]  P. Krajnc,et al.  Aryl acrylate based high‐internal‐phase emulsions as precursors for reactive monolithic polymer supports , 2005 .

[28]  M. Birch,et al.  Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro. , 2004, Biomaterials.

[29]  P. Blood,et al.  Electrodeposition of lead dioxide on carbon substrates from a high internal phase emulsion (HIPE) , 2004 .

[30]  F. Schork,et al.  Emulsion and miniemulsion polymerizations with an oil‐soluble initiator in the presence and absence of an aqueous‐phase radical scavenger , 2002 .

[31]  N. Cameron,et al.  Tissue engineering matrixes by emulsion templating , 2002 .

[32]  P. Krajnc,et al.  Monolithic scavenger resins by amine functionalizations of poly(4-vinylbenzyl chloride-co-divinylbenzene) PolyHIPE materials. , 2002, Organic letters.

[33]  M. Narkis,et al.  Polymerized high internal-phase emulsions: Properties and interaction with water , 2002 .

[34]  P. Krajnc The influence of some polymerization conditions on the morphology of poly(styrene-co-divinylbenzene) monoliths , 2002 .

[35]  N. Cameron,et al.  Emulsion-Derived Foams (PolyHIPEs) Containing Poly(ε-caprolactone) as Matrixes for Tissue Engineering , 2001 .

[36]  A. Barbetta,et al.  High internal phase emulsions (HIPEs) containing divinylbenzene and 4-vinylbenzyl chloride and the morphology of the resulting PolyHIPE materials , 2000 .

[37]  B. Benicewicz,et al.  Open-celled polymeric foam monoliths for heavy metal separations study , 1998 .

[38]  D. Sherrington,et al.  Chemical modification of monolithic poly(styrene–divinylbenzene) polyHIPE® materials , 1996 .

[39]  E. Ruckenstein,et al.  Concentrated emulsion pathway to novel composite polymeric membranes and their use in pervaporation , 1995 .

[40]  K. J. Lissant,et al.  A study of medium and high internal phase ratio water/polymer emulsions , 1973 .