Differential Effects of Gefitinib and Cetuximab on Non–small-cell Lung Cancers Bearing Epidermal Growth Factor Receptor Mutations

BACKGROUND Many patients with non-small-cell lung cancer (NSCLC) who achieve radiographic responses to treatment with the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors gefitinib and erlotinib have somatic mutations in the EGFR tyrosine kinase domain. However, little is known about the efficacy of cetuximab, an antibody against the EGFR extracellular domain, in EGFR mutant NSCLC. METHODS NSCLC cell lines carrying wild-type EGFR (A549, H441, and H1666) or mutant EGFR (H3255, DFCILU-011, PC-9, and HCC827) were treated with various dilutions of gefitinib or cetuximab relative to maximal achievable serum concentration. Cell growth was analyzed by the MTS assay, with differences between dose-response curves analyzed nonparametrically. Apoptosis was analyzed by propidium iodide staining and immunoblotting for PARP. Phosphorylation of EGFR and the downstream signaling components ERK1/2 and Akt were analyzed by immunoblotting. Statistical tests were two-sided. RESULTS Growth of NSCLC lines with wild-type EGFR was slightly (A549 and H441) or moderately (H1666) inhibited by gefitinib and cetuximab, and the effects of the two agents were similar. Both agents also induced no (H441) or moderate (H1666) apoptosis in NSCLC cells with wild-type EGFR. By contrast, gefitinib was statistically significantly more effective than cetuximab at inhibiting growth of EGFR mutant cells (H3255: P = .003, DFCILU-011: P = .011, and PC-9: P = .003), and gefitinib-treated EGFR mutant cells had higher levels of apoptosis than cetuximab-treated cells (mean fold increase in apoptosis by 1 microM of gefitinib and 10 microg/mL of cetuximab relative to control, H3255: 8.3 [95% confidence interval {CI} = 4.8 to 11.8] and 2.1 [95% CI = 2.0 to 2.2], respectively, P = .025; DFCILU-011: 5.7 [95% CI = 5.1 to 6.3] and. 0.9 [95% CI = 0.3 to 1.5], respectively, P < .001). Gefitinib treatment decreased EGFR, ERK1/2, and Akt phosphorylation in EGFR mutant cell lines whereas cetuximab had relatively little effect. Both gefitinib and cetuximab inhibited the growth of HCC827 cells, but gefitinib inhibited growth to a greater extent (P = .003). CONCLUSIONS EGFR mutations in NSCLC cells are associated with sensitivity to gefitinib but not to cetuximab.

[1]  J. Minna,et al.  Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. , 2006, Journal of the National Cancer Institute.

[2]  M. Ostland,et al.  Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[3]  N. Saijo,et al.  Establishment of a human non‐small cell lung cancer cell line resistant to gefitinib , 2005, International journal of cancer.

[4]  C. García-Girón,et al.  Epidermal growth factor receptor activating mutations in Spanish gefitinib-treated non-small-cell lung cancer patients. , 2005, Annals of oncology : official journal of the European Society for Medical Oncology.

[5]  Silvia Benvenuti,et al.  Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to antiEGFR treatment in colorectal cancer: a cohort study. , 2005, The Lancet. Oncology.

[6]  Takayuki Kosaka,et al.  Mutations of the epidermal growth factor receptor gene predict prolonged survival after gefitinib treatment in patients with non-small-cell lung cancer with postoperative recurrence. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[7]  Young Tae Kim,et al.  Predictive and prognostic impact of epidermal growth factor receptor mutation in non-small-cell lung cancer patients treated with gefitinib. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[8]  C. Mermel,et al.  ErbB-3 mediates phosphoinositide 3-kinase activity in gefitinib-sensitive non-small cell lung cancer cell lines. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[9]  M. Meyerson,et al.  EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. , 2005, The New England journal of medicine.

[10]  H. Varmus,et al.  Acquired Resistance of Lung Adenocarcinomas to Gefitinib or Erlotinib Is Associated with a Second Mutation in the EGFR Kinase Domain , 2005, PLoS medicine.

[11]  T. Utsunomiya,et al.  Somatic Mutations of Epidermal Growth Factor Receptor in Colorectal Carcinoma , 2005, Clinical Cancer Research.

[12]  T. K. Johnson,et al.  The effects of cetuximab alone and in combination with radiation and/or chemotherapy in lung cancer. , 2005, Clinical cancer research : an official journal of the American Association for Cancer Research.

[13]  H. Varmus,et al.  KRAS Mutations and Primary Resistance of Lung Adenocarcinomas to Gefitinib or Erlotinib , 2005, PLoS medicine.

[14]  Michael Peyton,et al.  Aberrant epidermal growth factor receptor signaling and enhanced sensitivity to EGFR inhibitors in lung cancer. , 2005, Cancer research.

[15]  K. Kinzler,et al.  Somatic mutations of EGFR in colorectal cancers and glioblastomas. , 2004, The New England journal of medicine.

[16]  Shih-Feng Tsai,et al.  High Frequency of Epidermal Growth Factor Receptor Mutations with Complex Patterns in Non–Small Cell Lung Cancers Related to Gefitinib Responsiveness in Taiwan , 2004, Clinical Cancer Research.

[17]  Takayuki Kosaka,et al.  Mutations of the Epidermal Growth Factor Receptor Gene in Lung Cancer , 2004, Cancer Research.

[18]  Matthew Meyerson,et al.  Gefitinib Induces Apoptosis in the EGFRL858R Non–Small-Cell Lung Cancer Cell Line H3255 , 2004, Cancer Research.

[19]  R. Wilson,et al.  EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[20]  J. Rigas,et al.  Determinants of tumor response and survival with erlotinib in patients with non--small-cell lung cancer. , 2004, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[21]  Prakash Chinnaiyan,et al.  Dual-Agent Molecular Targeting of the Epidermal Growth Factor Receptor (EGFR) , 2004, Cancer Research.

[22]  N. Hanna,et al.  A phase II trial of cetuximab as therapy for recurrent non-small cell lung cancer (NSCLC). , 2004, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[23]  S. Gabriel,et al.  EGFR Mutations in Lung Cancer: Correlation with Clinical Response to Gefitinib Therapy , 2004, Science.

[24]  Patricia L. Harris,et al.  Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. , 2004, The New England journal of medicine.

[25]  Neal J Meropol,et al.  Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. , 2004, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[26]  M. Kuwano,et al.  Sensitivity to gefitinib (Iressa, ZD1839) in non-small cell lung cancer cell lines correlates with dependence on the epidermal growth factor (EGF) receptor/extracellular signal-regulated kinase 1/2 and EGF receptor/Akt pathway for proliferation. , 2004, Molecular cancer therapeutics.

[27]  David Cella,et al.  Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. , 2003, JAMA.

[28]  Masahiro Fukuoka,et al.  Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected]. , 2003, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[29]  G. Giaccone,et al.  Response to epidermal growth factor receptor inhibitors in non-small cell lung cancer cells: limited antiproliferative effects and absence of apoptosis associated with persistent activity of extracellular signal-regulated kinase or Akt kinase pathways. , 2003, Clinical cancer research : an official journal of the American Association for Cancer Research.

[30]  M. Loda,et al.  Sensitivity of Non-Small-Cell Lung Cancer Cell Lines Established from Patients Treated with Prolonged Infusions of Paclitaxel , 2003, Oncology.

[31]  W. Hahn,et al.  Human mammary epithelial cell transformation through the activation of phosphatidylinositol 3-kinase. , 2003, Cancer cell.

[32]  A. Harris,et al.  Phase I safety, pharmacokinetic, and pharmacodynamic trial of ZD1839, a selective oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with five selected solid tumor types. , 2002, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[33]  C. Dinney,et al.  Inhibition of angiogenesis by the antiepidermal growth factor receptor antibody ImClone C225 in androgen-independent prostate cancer growing orthotopically in nude mice. , 2002, Clinical cancer research : an official journal of the American Association for Cancer Research.

[34]  A. Hölscher,et al.  Epidermal growth factor receptor and HER2-neu mRNA expression in non-small cell lung cancer Is correlated with survival. , 2001, Clinical cancer research : an official journal of the American Association for Cancer Research.

[35]  John Mendelsohn,et al.  The EGF receptor family as targets for cancer therapy , 2000, Oncogene.

[36]  L. Norton,et al.  Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin. , 2000, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[37]  J. Mendelsohn,et al.  Augmentation of a humanized Anti-HER2 mAb 4D5 induced growth inhibition by a human-mouse chimeric anti-EGF receptor mAb C225 , 1999, Oncogene.

[38]  N. Rosen,et al.  A Farnesyl-Protein Transferase Inhibitor Induces p21 Expression and G1 Block in p53 Wild Type Tumor Cells* , 1998, The Journal of Biological Chemistry.

[39]  H. Bier,et al.  Anti-(epidermal growth factor) receptor monoclonal antibodies for the induction of antibody-dependent cell-mediated cytotoxicity against squamous cell carcinoma lines of the head and neck , 1998, Cancer Immunology, Immunotherapy.

[40]  E. Dmitrovsky,et al.  Overexpression of the epidermal growth factor receptor and its ligand transforming growth factor alpha is frequent in resectable non-small cell lung cancer but does not predict tumor progression. , 1997, Clinical cancer research : an official journal of the American Association for Cancer Research.

[41]  G. Stoner,et al.  Inhibition of lung tumor cell growth in vitro and mouse lung tumor formation by lovastatin. , 1996, Cancer letters.

[42]  J. Mendelsohn,et al.  Antibody-induced epidermal growth factor receptor dimerization mediates inhibition of autocrine proliferation of A431 squamous carcinoma cells. , 1994, The Journal of biological chemistry.

[43]  R. Coffey,et al.  Transforming growth factor-alpha production and autoinduction in a colorectal carcinoma cell line (DiFi) with an amplified epidermal growth factor receptor gene. , 1993, Cancer research.

[44]  R. Kumar,et al.  Ligand-induced activation of A431 cell epidermal growth factor receptors occurs primarily by an autocrine pathway that acts upon receptors on the surface rather than intracellularly. , 1991, The Journal of biological chemistry.

[45]  J. Baselga,et al.  Pharmacodynamic studies of the epidermal growth factor receptor inhibitor ZD1839 in skin from cancer patients: histopathologic and molecular consequences of receptor inhibition. , 2002, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.